Updated Report of HAB Case Study in the Northwestern Sea Area of Kyushu Region

December, 2009

Contents

1	Introduction	1
	1.1 Objective	1
	1.2 Background information of the case study	1
	1.3 Overview of the target sea area	1
	1.3.1 Location and boundary	1
	1.3.2 Environmental and geographical characteristics	2
2	Definitions of HAB and related regulations and standards	4
	2.1 Definition of a HAB event	4
	2.1.1 Definition of a red-tide event	4
	2.1.2 Definition of a toxin-producing plankton event	4
	2.2 Regulations and standards for HAB events	5
	2.2.1 Regulations and standards for red-tide events	5
	2.2.2 Regulations and standards for shellfish contamination	6
3	Framework and parameters of HAB monitoring	7
•	3.1 Monitoring framework	7
	3.1.1 Framework of red-tide monitoring	7
	3.1.2 Framework of shellfish and toxin-producing plankton monitoring	11
	3.2 Monitoring parameters	14
	3.3 Data and information used in the HAB case study	16
4	Status of HAB events	17
•	4.1 Status of red-tide events from 1979-2006	17
	4.1.1 Number of red-tide events	17
	4.1.2 Number of red-tide events by year	17
	4.1.3 Number of red-tide events by month	18
	4 1 4 Types of red-tide species	18
	4.2 Status of shipment stoppage and the causative toxin-producing planktons	21
5	4.2 Status of shipment stoppage and the causative toxin-producing planktons	22
•	5.1 Status of red-tide events in 2006	22
	5.1.1 Number of red-tide events	22
	5.1.2 Number of red-tide events by month	22
	5.1.2 Number of red-tide events by month	22
	5.1.4 Location of red-tide events	23
	5.1.5 Types of red-tide species	27
	5.1.6 Maximum cell concentration of red-tide events	27
	5.1.7 Status of red-tide induced fishery damage	29
	5.1.7 Status of red-tide induced fishery damage	30
	5.2.1 Status of toxin-producing planktons	30
	5.2.2 Status of shipment stoppage	33
	5.2.2 Status of shipment stoppage	33
	5.3.1 Karenia mikimotoi	33
	5.3.2 Cochlodinium polykrikoides	33
	5.3.3 Heterosigma akashiwo	33
	5.4 Environmental conditions during post red-tide monitoring	34
	5.5 Environmental conditions during regular HAB monitoring	37
	5.5.1 Environmental conditions during regular red-tide monitoring	37
	5.5.2 Environmental conditions during regular toxin-producing plankton monitoring	39
	5.6 Meteorological conditions during regular red-tide monitoring	43
6	Monitoring with satellite remote sensing images	44
Ĭ	Monitoring with satellite remote sensing images	ncies
	44	
	6.2 Utilization status of satellite remote sensing chlorophyll images in local fisheries agei	ncies
	46	
7	Conclusion	48
•	7.1 Status of recent HAB events in the target sea area	48
	7.2 Environmental conditions during HAB events	48
	7.3 Red tide monitoring with satellite remote sensing images	49
	7.4 Information sharing among the NOWPAP members	49
8	References	50

1 Introduction

1.1 Objective

The objective of conducting the HAB case study in the northwestern sea area of Kyushu region (hereinafter abbreviated as 'case study') is to establish the most effective and laborsaving ways for sharing among the NOWPAP member states, information on HAB events and associated oceanographic and meteorological conditions.

1.2 Background information of the case study

The case study provides information on the red tides and toxin-producing planktons that have occurred in the northwestern sea area of Kyushu region. As defined by NOWPAP CEARAC (2005), red tides can be merely a water discoloration event or can be harmful and in some cases induce fishery damage. On the other hand, toxin-producing planktons can contaminate fish and shellfish even under low densities. In this case study, HAB refers to blooms of both unharmful/harmful red tides and toxin-producing planktons. Information on toxin-producing planktons is provided through two sources: regular monitoring data of toxin-producing planktons and records of shipment stoppage due to shellfish contamination.

In regards to the scientific names of the HAB species, in principal, the names used in the past CEARAC reports (e.g. Integrated Report) were used. However, updated names or country-specific names were also concurrently listed as far it was possible. The information presented in the case study was mainly based on the published reports and websites of the national or local government monitoring organizations.

The status of HAB events is presented for two time periods. Chapter 4 describes the yearly trend of HAB events from the initiation of HAB monitoring to the present. Chapter 5 describes the HAB events in 2006, which include information such as the season and location of occurrence, and the associated environmental conditions.

In addition, the case study discusses the prospects and issues of using satellite remote sensing technology for red-tide monitoring.

1.3 Overview of the target sea area

1.3.1 Location and boundary

The northwestern sea area of Kyushu region (hereinafter called as 'target sea area') was selected for Japan's HAB case study. The target sea area faces the East China Sea, and includes the sea areas of Nagasaki, Saga and Fukuoka Prefecture, and the Sea of Japan side of Yamaguchi Prefecture. The target sea area was broadly demarcated into the following 4 sea regions: coastal area of Yamaguchi Prefecture, north Kyushu sea area (coastlines of Fukuoka, Saga and part of Nagasaki Prefecture), west Kyushu sea area (Nagasaki Prefecture) and remote islands (Nagasaki Prefecture). Inland seas such as the Ariake Sea, Yatsushiro Sea and Seto Insland Sea were not included. Figure 1.1 shows the locations of the above 4 sea regions. The monitoring areas/sites of each prefecture are described in Section 3.1.

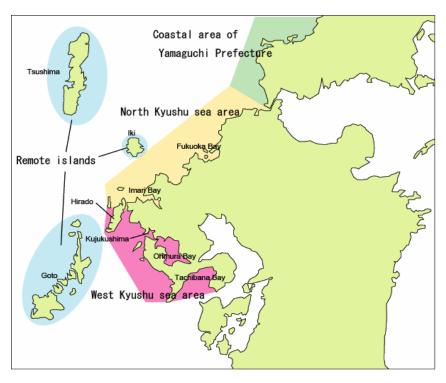


Figure 1.1 Target sea area of Japan's HAB case study

1.3.2 Environmental and geographical characteristics

The target sea area is strongly influenced by the Tsushima Warm Current. The topography of the coastline is complex; comprised of many beaches and small inlets. In some areas, such as in the west Kyushu sea area, numerous small islands (Kujuku-shima Islands) are scattered along the coast. Also there are many remote islands such as the Goto Islands, Tsushima and Iki.

Fishery is a major industry in the coastal areas of the target sea area, and many aquaculture farms operate along the calm inlets. Table 1.1 shows the types of aquaculture product and the amount of aquaculture production in the prefectures of the target sea area. Aquaculture production in each prefectural is calculated based on the reports and the information shown in each web site. Figure 1.2 shows the areas where the fish/shellfish/seaweed aquaculture farms are operated in the target sea area.

The main aquaculture products in Yamaguchi Prefecture (side of Sea of Japan) are seaweed (wakame), amberjack, red seabream and flatfish. In the north Kyushu sea area, the main aquaculture products of Fukuoka Prefecture are oyster, seaweed (wakame) and prawn; and the main aquaculture products of Saga Prefecture are red seabream, amberjack, prawn and pearls. The main aquaculture products of Nagasaki Prefecture are amberjacks, red seabream, pufferfish, oyster and seaweeds (nori, wakame); with particularly high production of amberjacks. Within the 4 prefectures, Nagasaki has the highest aquaculture production (21,424 tons in 2004).

Apart from aquaculture, the coastal fisheries in the target sea area generally target migratory fish species such as sardine, horse mackerel and Pacific mackerel; although there are some variations in the target species between the prefectures.

Table 1.1 The types of aquaculture products and the amount of aquaculture production in the prefectures of the target sea area

Area	Type of aquaculture product	Aquaculture production (ton)	Note
Yamaguchi Pref. (Sea of Japan)	Seaweed (Wakame), Amberjack, Red seabream, Flatfish, Shellfish, etc.	862 (In 2001)	The following fish/shellfish are mainly caught by the coastal fisheries: Non-migratory species: Rockfish, Chicken grunt, Abalone, etc. Migratory species: Sardine, Horse mackerel, Pacific mackerel, Puffer fish, Tilefish, Squids, etc.
Fukuoka Pref. (North Kyushu sea area)	Oyster, Seaweed (Wakame), Prawn, etc.	199 (In 2004)	Horse mackerel, Pacific mackerel and shellfish (Japanese littleneck) are mainly caught by the coastal fisheries.
Saga Pref. (North Kyushu sea area)	Red seabream, Amberjack, Prawn, Pearl oyster, etc.	Unknown	Aquaculture production amounts to 80,460 t, if Nori aquaculture production in Ariake Sea is included. Red seabream, Flatfish, Flounder, Squid, Tiger prawn are mainly caught by the coastal fisheries.
Nagasaki Pref (West Kyushu sea area, remote islands)	Amberjack, Red seabream, Globefish, Oyster, Seaweed (Nori, Wakame), etc.	21,424 (In 2004)	Sardine, Horse mackerel, Squid and Pacific mackerel are mainly caught by the coastal fisheries.

Source:

Statistical Yearbook of Yamaguchi Prefecture

(http://www.pref.yamaguchi.jp/gyosei/tokei-b/nenkan/mokuji07.htm)

Fishing Port & Fishing Village of YAMAGUCHI

(http://www.pref.yamaguchi.lg.jp/cms/a16600/port/pdf.html)

Fukuoka Prefecture Web Site

(http://www.pref.fukuoka.lg.jp/d07/fukuoka-gyoko.html)
Kyusyu Regional Agricultural Administration Office Web Site

(http://www.maff.go.jp/kyusyu/index.html)
White Paper on Fisheries of Nagasaki Prefecture F.Y. 2006

(http://www.n-suisan.jp/yumetobi/)

Yamaguchi Prefectural Web Site

(http://www.pref.yamaguchi.lg.jp/cms/a16500/uminari/uminari-top.html)

Saga Prefecture Government Web Site

(http://www.pref.saga.lg.jp/web/gaiyou-gennkai.html)

Nagasaki Prefecture Fisheries Department

(http://www.n-suisan.jp/yumetobi/index.html)

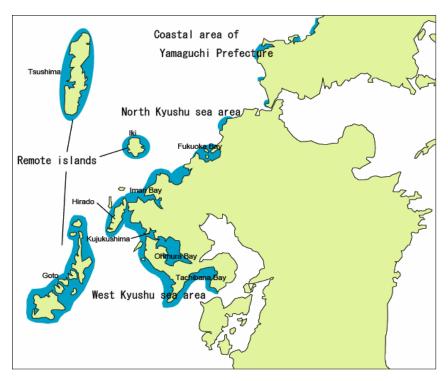


Figure 1.2 Areas where fish/shellfish/seaweed aquaculture farms are operated in the target sea area

- 2 Definitions of HAB and related regulations and standards
- 2.1 Definition of a HAB event
- 2.1.1 Definition of a red-tide event

Most red-tide events that were recorded in the reports of the monitoring organizations resulted from the red-tide surveys that the monitoring organizations conduct after water discoloration or fishery damage event is reported, such as by fishermen. In the above reports, a red-tide event was considered as '1 event' from the initiation to the cessation of water discoloration.

In this case study, the statistics on the red-tide events are based on the reports of the monitoring organizations. The reports also differentiate red-tide events that induced fishery damage, and provide information on the extent of damage caused by each red-tide. The case study, therefore also includes statistics on the red-tide events that induced fishery damage.

2.1.2 Definition of a toxin-producing plankton event

In order to prevent shipment of contaminated shellfish by toxin-producing planktons, monitoring organizations in the target sea area regularly inspect toxin levels in the harvested shellfish and also monitor for the presence of toxin-producing planktons in aquaculture areas. However, there are no established regulatory standards for toxin-producing planktons because shellfish contamination is not necessarily related to the concentration of toxin-producing planktons, i.e. shellfish contamination may occur even under low concentration of toxin-producing planktons. Monitoring organizations conduct the shellfish inspections mainly during the shipment period and stops shipment when the toxin levels exceed the set toxin standards (in Mouse Unit: MU). In Japan, inspections are conducted for toxins of diarrhetic shellfish poisoning (DSP) and paralytic

shellfish poisoning (PSP).

In the case study, the monitoring results of the toxin-producing planktons and the status of shipment stoppage are presented.

2.2 Regulations and standards for HAB events

2.2.1 Regulations and standards for red-tide events

In order to prevent fishery damage, monitoring organizations have set 'warning/action standards' against red-tide species known to induce fishery damage. If the concentrations of these species exceed the set warning/action standards, the monitoring organizations issue warnings to fishermen and coastal users. Tables 2.1, 2.2 and 2.3 show the warning/action standards set by Nagasaki, Fukuoka and Yamaguchi Prefecture, respectively. Table 2.4 shows the red-tide species with warning/action standards for each prefecture.

Table 2.1 HAB warning/action standards of Nagasaki Prefecture

	-		
	Warning/action standards (cells/mL)		
Species name	Warning level*1	Action level*2	Note (Affected fish/shellfish)
Chattonella antiqua	1	10	Yellowtail, cockles etc.
Chattonella marina	1	10	Yellowtail etc.
Karenia mikimotoi	100	500	Fish, shellfish, crustaceans etc.
Cochlodinium polykrikoides	50	500	Yellowtail, red seabream,
			pufferfish, striped jack etc.
Heterosigma akashiwo	1,000	10,000	Yellowtail, grouper etc.
Heterocapsa circularisquama	10	50	Shellfish (mainly bivalves)

^{*1}Warning level: Track plankton movement/Stop or prepare to stop feeding/ Move or prepare to move fish-cage

Source: Nagasaki Prefectural Institute of Fisheries

(http://www.marinelabo.nagasaki.nagasaki.jp/news/gyorendayori/H13/1307no75akasio-tyui.pdf)

Table 2.2 HAB warning/action standards of Fukuoka Prefecture

	Warning/action standards (cells/mL)		
Species name	Warning level Action level *1		Note
Heterosigma akashiwo	-	10,000	

Action level: Levels that could cause fish mortality

Source: Website of Fukuoka Fisheries and Marine Technology Research Center

(http://www.sea-net.pref.fukuoka.jp/)

Table 2.3 HAB warning/action standards of Yamaguchi Prefecture

	Warning/action standards (cells/mL)		
Species name	Warning level Action level *1		Note
Karenia mikimotoi	500	5,000	
Heterosigma akashiwo	5,000	50,000	

Action level: Levels that could cause fish mortality

Source: Yamaguchi Prefectural (http://www.pref.yamaguchi.lg.jp/cms/a16500/uminari/uminari-top.html)

^{*2}Action level: Stop feeding or move fish cage

Table 2.4 Red-tide species with warning/action standards by each prefecture

Species name	Nagasaki	Saga	Fukuoka	Yamaguchi
Dinophyceae				
Karenia mikimotoi	V	~	'	~
Cochlodinium polykrikoides	V	✓		
Heterocapsa circularisquama	✓	~	'	
Raphidophyceae				
Chattonella antiqua	V			
Chattonella marina	'	~		
Heterosigma akashiwo	'	~	✓	✓

Source:

Fukuoka Fisheries and Marine Technology Research Center (2007)

(http://www.sea-net.pref.fukuoka.jp/gaiyo/oshirase.htm)

Nagasaki Prefectural Institute of Fisheries (2007)

(http://www.marinelabo.nagasaki.nagasaki.jp/news/gyorendayori/H13/1307no75akasio-tyui.pdf)

Saga Prefectural Genkai Fisheries Promotion Center (2007)

Yamaguchi Prefectural Fisheries Research Center (2007)

(http://www.pref.yamaguchi.lg.jp/cms/a16500/uminari/uminari-top.html)

2.2.2 Regulations and standards for shellfish contamination

As described previously, there are no regulatory standards against toxin-producing planktons because shellfish contamination occurs even under low concentration of toxin-producing planktons. However, monitoring organizations regularly monitor for the presence of several toxin-producing plankton species during the shellfish harvest seasons. Table 2.5 shows the toxin-producing plankton species that are monitored by each prefecture.

Table 2.5 Toxin-producing plankton species that are regularly monitored by each prefecture

Species name	Nagasaki	Saga	Fukuoka	Yamaguchi
Dinophyceae				
Dinophysis spp.				
(Dinophysis fortii, Dinophysis	~	~	~	~
acuminata, Dinophysis caudata)				
Gymnodinium catenatum	~	V	~	~
Alexandrium spp.				
(Alexandrium catenella, Alexandrium	~	V	~	~
tamarense)				

Source:

Fukuoka Fisheries and Marine Technology Research Center (2007)

Nagasaki Prefectural Institute of Fisheries (2007)

Saga Prefectural Genkai Fisheries Promotion Center (2007)

Yamaguchi Prefectural Fisheries Research Center (2007)

In order to prevent shipment and harvesting of contaminated shellfish, monitoring organizations conduct regular inspections of shellfish that are produced at the shellfish farming areas. If the toxin level in the shellfish exceeds the regulatory standards, shipment will be stopped voluntarily. Warnings will also be sent to recreational shellfish diggers via the media. The regulatory standard is expressed in terms of per unit gram of wet shellfish meat, which is based on the notifications of the Ministry of Agriculture, Forestry and Fisheries and Ministry of Health, Labour and Welfare. The regulatory standards are 4 MU/g wet weight for PSP and 0.05 MU/g wet weight for DSP. In principal, shipment of shellfish will be stopped until the toxin levels return to acceptable levels for 3 consecutive inspections.

For reference: Website of Ministry of Agriculture, Forestry and Fisheries

(http://www.maff.go.jp/fisheat/fish-top.htm)

3 Framework and parameters of HAB monitoring

- 3.1 Monitoring framework
- 3.1.1 Framework of red-tide monitoring

To prevent fishery damages from red tides, monitoring organizations of each prefecture conduct 'regular red-tide monitoring' and 'post red-tide monitoring'. Post red-tide monitoring is conducted after receiving reports of red-tide events from fishery associations. Table 3.1 lists the sea areas that are regularly monitored by the monitoring organizations of each prefecture. Figures 3.1-3.3 show the locations of the regular red-tide monitoring sites in Fukuoka, Saga and Nagasaki Prefecture, respectively. Figure 3.4 shows the locations of the fishery associations in Nagasaki Prefecture that report on red-tide events to the monitoring organizations.

Table 3.1 Sea areas that are regularly monitored by the monitoring organizations of each prefecture (red tide)

Monitoring organization	Monitored sea area
Nagasaki Prefectural Institute of Fisheries	Northern Kyushu
(http://www.marinelabo.nagasaki.nagasaki.jp/)	Imari Bay, Hirado (Usuka/Furue Bay)
	Western Kyushu
	Ohmura Bay, Tachibana Bay, coasts of
	Kitamatsu, Kujukushima, coast of Seihi,
	Ariake Sea
	Remote Islands
	Goto, Iki, Tsushima
Saga Prefectural Genkai Fisheries Promotion Center	Northern Kyushu
(http://www.pref.saga.lg.jp/at-contents/shigoto/suisan/ge	Karatsu Bay, Nagoyaura, Kariya Bay, Imari
nsui/)	Bay
Fukuoka Fisheries and Marine Technology Research	Northern Kyushu
Center	Fukuoka Bay, Karatsu Bay, Genkai Sea,
(http://www.sea-net.pref.fukuoka.jp/)	Hibiki Sea
Yamaguchi Prefectural Fisheries Research Center	Coastal area of Yamaguchi Pref.
(http://www.pref.yamaguchi.lg.jp/cms/a16500/uminari/u	(Sea of Japan)
minari-top.html)	(Oca of dapart)

Note: Regular red-tide monitoring is conducted in the sea areas enclosed by square line

Source:

Fukuoka Fisheries and Marine Technology Research Center (2007) Nagasaki Prefectural Institute of Fisheries (2007)

Saga Prefectural Genkai Fisheries Promotion Center (2007)

Yamaguchi Prefectural Fisheries Research Center (2007)

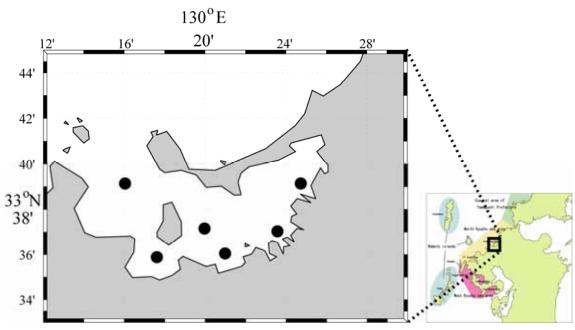


Figure 3.1 Regular red-tide monitoring sites in Fukuoka Prefecture

Source: Fukuoka Fisheries and Marine Technology Research Center (2007)

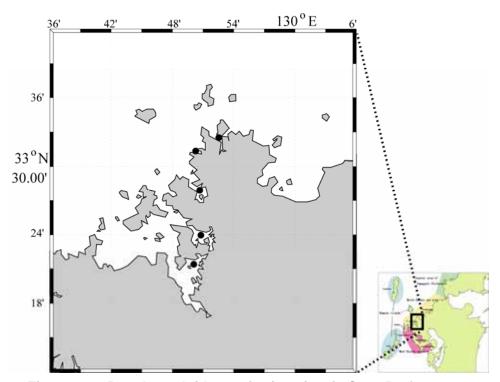


Figure 3.2 Regular red-tide monitoring sites in Saga Prefecture

Source: Saga Prefectural Genkai Fisheries Promotion Center (2007)

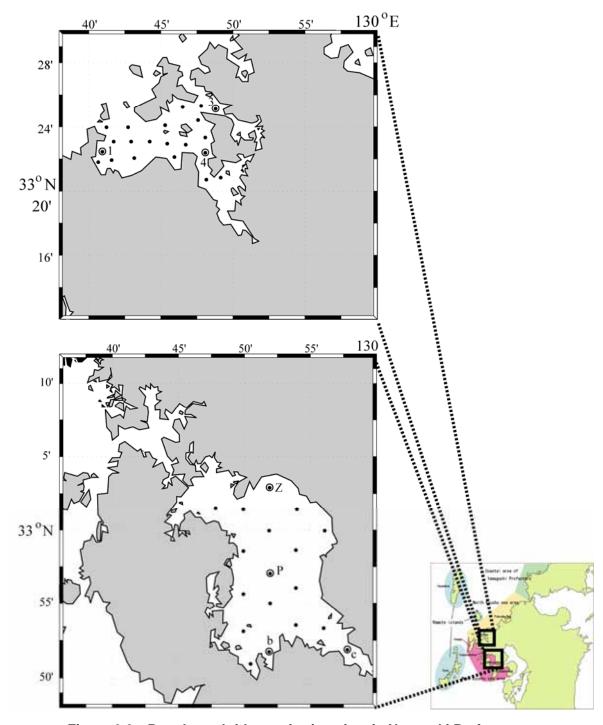


Figure 3.3 Regular red-tide monitoring sites in Nagasaki Prefecture

Circles indicate monitoring sites, double circles indicate monitoring sites which are conducted detailed survey Source: Nagasaki Prefectural Institute of Fisheries (2007)

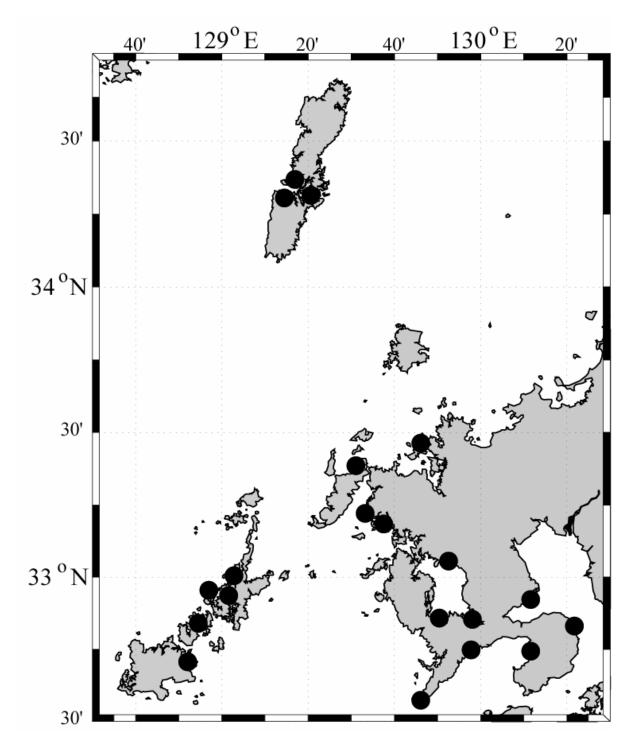


Figure 3.4 Locations of the fishery associations in Nagasaki Prefecture that cooperate in red-tide monitoring (the black dots indicate the locations of the fishery associations)

Source: Nagasaki Prefectural Institute of Fisheries (2007)

3.1.2 Framework of shellfish and toxin-producing plankton monitoring

In order to prevent shipment of contaminated shellfish by toxin-producing planktons, monitoring organizations conduct 'regular shellfish-contamination monitoring', which include inspections of toxin levels in shellfish and monitoring for the presence of toxin-producing planktons in the aquaculture areas. Table 3.2 lists the sea areas that are monitored by the monitoring organizations of each prefecture. Figures 3.5-3.8 show the locations of shellfish sampling and toxin-producing plankton monitoring sites in Yamaguchi, Fukuoka, Saga and Nagasaki Prefecture, respectively.

Table 3.2 Sea areas that are monitored by the monitoring organizations of each prefecture (shellfish and toxin-producing planktons)

Monitoring organization	Monitored sea area
Nagasaki Prefectural Institute of Fisheries (http://www.marinelabo.nagasaki.nagasaki.jp/)	Western Kyushu Tachibana bay Remote Islands Tsushima
Saga Prefectural Genkai Fisheries Promotion Center	Northern Kyushu Karatsu Bay, Nagoyaura, Kariya Bay, Imari Bay
(http://www.pref.saga.lg.jp/at-contents/shigoto/suisan/gensui/)	
Fukuoka Fisheries and Marine Technology Research Center	Northern Kyushu Fukuoka Bay, Karatsu Bay
(http://www.sea-net.pref.fukuoka.jp/)	Coastal area of Sea of Japan
Yamaguchi Prefectural Fisheries Research Center	Sensaki Bay
(http://www.pref.yamaguchi.lg.jp/cms/a16500/umi nari/uminari-top.html)	

Source:

Fukuoka Fisheries and Marine Technology Research Center (2007)

Nagasaki Prefectural Institute of Fisheries (2007)

Saga Prefectural Genkai Fisheries Promotion Center (2007)

Yamaguchi Prefectural Fisheries Research Center (2007)

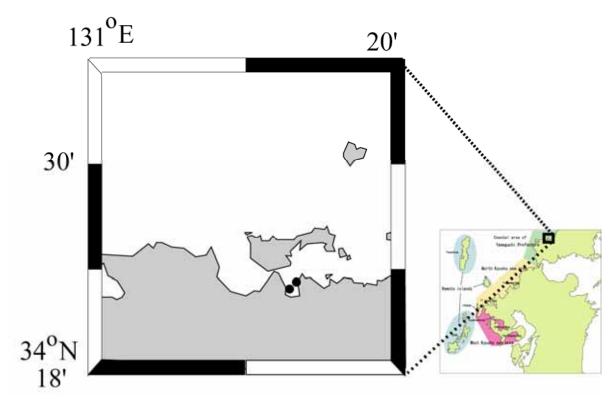


Figure 3.5 Locations of shellfish sampling and toxin-producing plankton monitoring sites in Yamaguchi Prefecture

Source: Yamaguchi Prefectural Fisheries Research Center (2007)

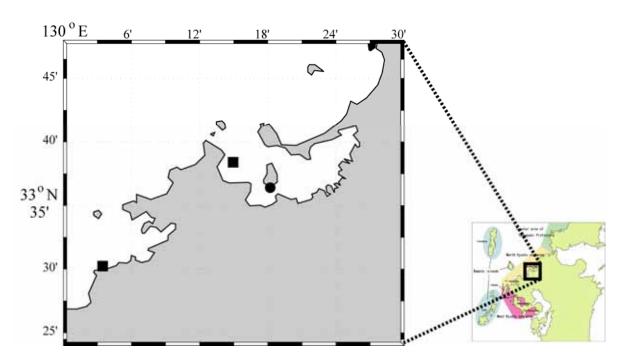


Figure 3.6 Locations of shellfish sampling and toxin-producing plankton monitoring sites in Fukuoka Prefecture

Black circle indicates location of shellfish poisoning monitoring (*Ruditapes philippinarum*), black squares indicate location of shellfish poisoning monitoring (oyster).

Source: Fukuoka Fisheries and Marine Technology Research Center (2007)

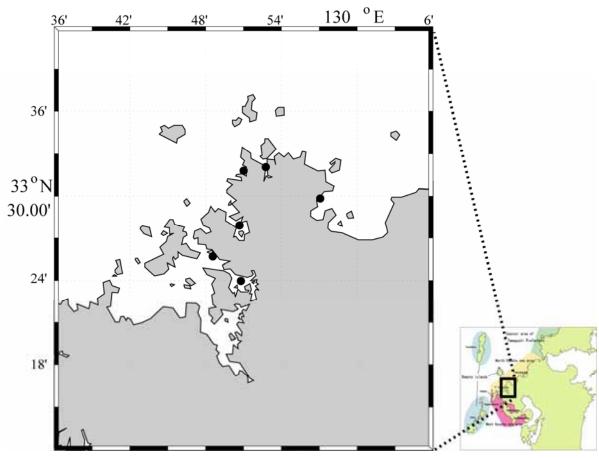


Figure 3.7 Locations of shellfish sampling and toxin-producing plankton monitoring sites in Saga Prefecture Source: Saga Prefectural Genkai Fisheries Promotion Center (2007)

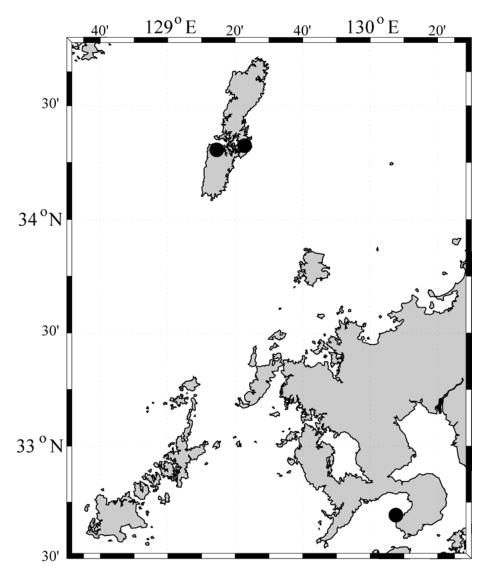


Figure 3.8 Locations of shellfish sampling and toxin-producing plankton monitoring sites in Nagasaki Prefecture

Source: Nagasaki Prefectural Institute of Fisheries (2007)

3.2 Monitoring parameters

As described in Section 3.1, the following three types of HAB related monitoring are conducted in the target sea area: post red-tide monitoring, regular red-tide monitoring and regular shellfish-contamination monitoring. Table 3.3 shows the objectives and monitoring parameters of the above monitoring types.

Post red-tide monitoring is conducted only after water discoloration or fishery damage is reported. Regular red-tide monitoring and regular shellfish-contamination monitoring are conducted regularly at fixed locations, irrespective of any HAB events.

Table 3.3 Objectives and monitoring parameters of the HAB monitoring

Monitoring		Monitoring parameter				Monitoring
type	Main objectives	<u>HAB</u>	Water quality	<u>Meteorology</u>	<u>Others</u>	frequency
Post red-tide	To minimize fishery	-Type of red-tide	-Water temp.	None		Immediately after

monitoring	damage by tracing	spp.	-Salinity			water discoloration
	red tides	(priority/causative	-DO			or fishery damage
		spp.)				is reported
		-Cell				
		concentration				
		-Bloom area				
		-Water color				
		-Fishery damage				
Regular	To check presence	-Type of red-tide	-Water temp.	-Weather	Sediment	Fukuoka : 1/month
red-tide	of red-tide spp.	spp.	-Salinity	-Cloud cover	quality	Saga :1/month
monitoring		-Cell	-DO	-Wind		(May-October)
		concentration	-pH	direction/speed		Nagasaki : 1/month
		-Water color	-COD	-Precipitation		(June-October)
		-Sedimentation	-Transparency	-Daylight time		
			-Nutrients			
			-Chlorophyll-a			
Regular	To check presence	-Type of	-Water temp.			12-16/year
shellfish-conta	of toxin-producing	toxin-producing	-Salinity			(approx. 1/month)
mination	plankton spp.	plankton spp.	-DO			
monitoring		-Cell	-pH			
		concentration	-Transparency			
		-Water color	-Nutrients			
			-Chlorophyll-a			
	To check shellfish				Toxin levels	1/week until toxin
	contamination				in shellfish	levels in shellfish
					(MU/g)	satisfy the
						regulatory
						standards

Source:

Nagasaki Prefectural Institute of Fisheries (2007) Saga Prefectural Genkai Fisheries Promotion Center (2007) Fukuoka Fisheries and Marine Technology Research Center (2007) Yamaguchi Prefectural Fisheries Research Center (2007)

3.3 Data and information used in the HAB case study

Information and data on HAB events were mainly collected from the following sources:

- · Reports published by organizations that conduct HAB monitoring in the target sea area
- · Reports of the Fisheries Agency Kyushu regional office

Since the monitored parameters are slightly different between the monitoring organizations, the non-monitored parameters are left blank to indicate that there are no data.

Table 3.4 shows the monitoring parameters that will be referred in the case study.

Table 3.4 Monitoring parameters referred in the case study

	Monitoring parameter	Information/data source
	-HAB species (priority/causative spp.)	
HAB	-Cell concentration	Doot rod tide menitoring
ПАВ	-Bloom area	Post red-tide monitoring
	-Fishery damage	
	-Water temperature	
Water quality	-Salinity	Post red-tide monitoring
	-DO	
	-Water quality	Regular red-tide monitoring
Others	Transparency, nutrients, chlorophyll-a	Regular
Outers	-Meteorology	shellfish-contamination
	Weather, cloud cover, wind direction/speed	monitoring

4 Status of HAB events

4.1 Status of red-tide events from 1979-2007

4.1.1 Number of red-tide events

Figure 4.1 shows the number of red-tide events that occurred in the target sea area from 1979-2007. A total of 1,371 red-tide events were recorded during this period, in which 120 events induced fishery damage.

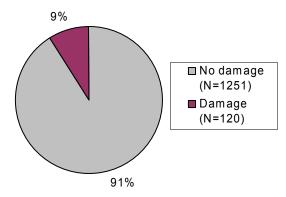


Figure 4.1 Number of red-tide events in the target sea area from 1979-2007 Note: Data of 1979-2005 year of Yamaguchi Prefecture are not included.

4.1.2 Number of red-tide events by year

Figure 4.2 shows the number of red-tide events by year in the target sea area. The annual number of red-tide events fluctuated between 29-92 events, and was highest in 1980 and lowest in 1997. The annual number of red-tide events that induced fishery damage fluctuated between 1-12 events. High number of events occurred in 1991 (10 events) and 2000 (12 events). The dinoflagellate *Karenia mikimotoi* was the main causative species of fishery damage in 1991 and 2000.

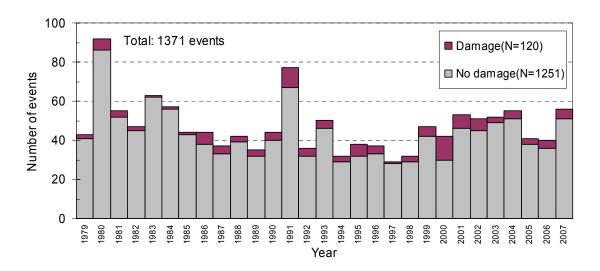


Figure 4.2 Number of red-tide events by year in the target sea area (1979-2007)

Note: Data of 1979-2005 year of Yamaguchi Prefecture are not included.

Source: Fisheries Agency (2007)

4.1.3 Number of red-tide events by month

Figure 4.3 shows the number of red-tide events by month in the target sea area. Approximately 50% of red-tide events occurred during June-August. Fishery damage occurred most frequently during July-August.

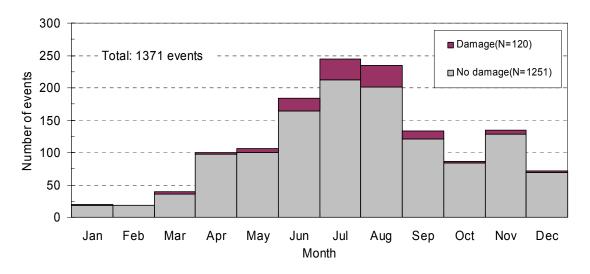


Figure 4.3 Number of red-tide events by month in the target sea area (1979-2007)

Note: Data of 1979-2005 year of Yamaguchi Prefecture are not included.

Source: Fisheries Agency (2007)

4.1.4 Types of red-tide species

Table 4.1 shows the red-tide species that were recorded in the target sea area and their frequency of occurrences from 1979-2007. A total of 99 red-tide species were recorded and were comprised from the following groups: dinoflagellates (36 species), diatoms (30 species), Raphidophyceae (8 species) and others (25 species). The following 7 species were recorded 50 or more times during 1979-2007: the dinoflagellates *Prorocentrum dentatum*, *Karenia mikimotoi* (=*Gymnodinium mikimotoi*), *Akashiwo sanguinea* (=*Gymnodinium sanguineum*), *Noctiluca scintillans*; the diatom *Skeletonema costatum*; the Raphidophyceae *Heterosigma akashiwo*; and the ciliate *Mesodinium rubrum*.

In regards to the red-tide species that are known to induce fishery damage (refer to Section 2.2), Cochlodinium polykrikoides was recorded 41 times and its frequency has increased over recent years. Karenia mikimotoi was recorded 154 times and has been constantly being recorded from 1979-2007. Heterocapsa circularisquama was recorded 16 times and was all after 1996. Chattonella antique was recorded 10 times and was all after 1990. Chattonella marina was recorded twice each in 1990 and 1992. Heterosigma akashiwo was recorded 93 times and has been constantly being recorded from 1985 onwards.

Table 4.1 Red-tide species recorded in the target sea area and their frequency of occurrences from 1979-2007

Genus and Species Cyanophyceae Microcystis sp. Trichodesmium erythraeum Trichodesmium sp. Cryptophyceae Cryptomonas sp. Cryptophyceae Dinophyceae	1979 -1980	1981 -1985	1986 -1990	1991 -1995	1996 -2000	2001 -2005	2006 -2007	Total
Microcystis sp. Trichodesmium erythraeum Trichodesmium sp. Cryptophyceae Cryptomonas sp. Cryptophyceae Dinophyceae			1					
Trichodesmium erythraeum Trichodesmium sp. Cryptophyceae Cryptomonas sp. Cryptophyceae Dinophyceae			1				-	
Trichodesmium sp. Cryptophyceae Cryptomonas sp. Cryptophyceae Dinophyceae				•	l	1	I	1
Cryptophyceae Cryptomonas sp. Cryptophyceae Dinophyceae				1				2
Cryptomonas sp. Cryptophyceae Dinophyceae		1						1
Cryptomonas sp. Cryptophyceae Dinophyceae								
Cryptophyceae Dinophyceae	1		1					1
Dinophyceae							1	1
Prorocentrum balticum				1				1
Prorocentrum compressum				1				1
Prorocentrum dentatum	2	6	16	21	16	3		64
Prorocentrum micans	2	3	2	2	1			10
Prorocentrum minimum	2	1			5	2	1	11
Prorocentrum sigmoides		19	5	8	6	6	4	48
Prorocentrum triestinum	3	8	9	10	3	1	5	39
Prorocentrum sp.	11	8	2	6	1	4	2	34
Cochlodinium polykrikoides	+	† Ť		3	8	27	3	41
Cochlodinium sp.	5	5	4			9		23
Gymnodinium breve(=Karenia brevis)		J	7	5	1	1		7
Gymnoumum breve(=rearenia brevis)				3	'	<u>'</u>		,
<u>Gymnodinium mikimotoi(</u> =Karenia mikimotoi)	26	20	28	20	32	16	12	154
Gymnodinium sanguineum(=Akashiwo sanguinea)	4	6	6	18	6	12	1	53
Gymnodinium catenatum				1		1		2
Gymnodinium sp.(midorishio)		9	2	5				16
Gymnodinium instriatum							1	1
Gymnodinium sp.	8	20	6	8	4	5		51
Gyrodinium sp.	1		1	1	1	1		5
Pheopolykrikos hartmannii			1	4	2	2		9
Polykrikos sp.	3	4		1				8
Noctiluca scintillans	13	20	23	38	19	43	8	164
Noctiluca sp.		2			3	16	7	28
Heterocapsa circularisquama					8	8		16
Heterocapsa triquetra	2	1	2	1	1			7
Heterocapsa sp.				2	1	1		4
Peridinium quinquecorne				2				2
Peridinium sp.		1	1					2
Alexandrium affine			-	8				8
Alexandrium catenella						3		3
Alexandrium sp.			1	2				3
Scrippsiella sp.		1	† '				1	1
Gonyaulax polygramma	4			2			 ' 	6
Gonyaulax polygramma Gonyaulax sp.	+ -	1	1					2
Ceratium furca	4	1	2	6	4	1	8	26
Ceratium fusus	1	1	_	 		<u> </u>		20
Ceratium sp.	1	1		İ				2
Haptophyceae				İ				
Emiliania huxleyi		1		1		1		1
Gephyrocapsa oceanica						2	1	3
Prymnesium sp.	1		1					1
Haptophyceae					1			1
Chrysophyceae	1							
Dictyocha fibula		1			1		1	3
Dictyocha sp.		1				1	 	2

Distephanus speculum			1					1
Distephanus sp.						1		1
Bacillariophyceae								
Skeletonema costatum	17	17	12	13	21	2	2	84
Skeletonema sp.		1			1	3	1	6
Thalassiosira diporocyclus						1		1
Thalassiosira sp.	11	3	3	8	10	2	1	38
Leptocylindrus danicus	1		2		2			5
Leptocylindrus minimus	1		2					3
Leptocylindrus sp.			1		2	1		4
Rhizosolenia alata	1							1
Rhizosolenia delicatula						1		1
Rhizosolenia sp.		2		1	2			5
Cerataulina bicornis		1	1					2
Cerataulina pelagica		1						1
Cerataulina sp.	1	1						2
Eucampia zodiacus				1				1
Chaetoceros affine		1						1
Chaetoceros curvisetum			1					1
Chaetoceros didymum		1	1					2
Chaetoceros lauderi		1						1
Chaetoceros pendulum	1							1
Chaetoceros subsecundum			1					1
Chaetoceros sp.	2	7	6	4	8	5		32
Lithodesmium variabile					1			1
Odontella sp.	1							1
Asterionella glacialis	1	2						3
Asterionella sp.					1			1
Neodelphineis pelagica		2	1		2			5
Pseudo-nitzschia pungens				1		1		2
Pseudo-nitzschia seriata	1							1
Pseud-nitzschia sp.					1			1
Nitzschia sp.		1	1		3			5
Raphidophyceae								
Chattonella antique			1	3	1	5		10
Chattonella globosa						2		2
Chattonella marina			2	2				4
Chattonella sp.			2		2			4
Fibrocapsa japonica			2	3	2	1		8
Heterosigma akashiwo		3	19	24	21	20	6	93
Heterosigma sp.		9	6	1				16
Olisthodiscus sp.	12	8	1					21
Euglenophyceae								
Eutreptiella gymnastica						1		1
Eutreptiella sp.	2	3	1	1		1	1	6
Prasinophyceae		1		1		1	1	
Pyramimonas sp.						1		1
Tetraselmis sp.		1	Ì	İ		İ	İ	1
Others								
Mesodinium rubrum	16	58	37	22	21	48	18	220
Mesodinium sp.	2	İ	Ì	İ		7	İ	9
Unknown micro-flagellates		İ	Ì	İ	1	1	İ	2
Stromdinium sp.							1	1
Tontonia sp.						1		1
Oithona brevicornis	1	1	1	1	1	1		1
Mixture of several phytoplankton							11	11
spp.(Diatoms and Flagellates) Unidentified plankton	14	22	5	4	1	-		46
Note:	14		ບ	4		<u> </u>	<u> </u>	40

Fisheries Agency Kyushu regional office (1979-2006)

^{*1:} The underlined species indicate red-tide species that are known to induce fishery damage (refer to Section 2.2)
*2: Data of 1979-2005 year of Yamaguchi Prefecture are not included.
Source:

Fukuoka Fisheries and Marine Technology Research Center (2007, 2008) Nagasaki Prefectural Institute of Fisheries (2007, 2008) Saga Prefectural Genkai Fisheries Promotion Center (2007, 2008) Yamaguchi Prefectural Fisheries Research Center (2007, 2008)

4.2 Status of shipment stoppage and the causative toxin-producing planktons

Table 4.2 shows the status of shipment stoppage caused by shellfish contamination in the target sea area. Shipment of shellfish has stopped 10 times during 1978-1999, and their duration ranged between 22-367 days. Shipment stoppage occurred in Senzaki Bay (coastal area of Yamaguchi Prefecture), Tsushima and Goto (both Nagasaki Prefecture). The contaminated shellfish were bivalves such as Japanese oyster and noble scallops, and were all contaminated by PSP-inducing toxins. The toxin levels in their meat ranged between 7.8-135 MU/g. The causative toxin-producing plankton species were *Gymnodinium catenatum* (at Senzaki Bay) and *Alexandrium catenella* (at Tsushima). Information on the status (e.g. cell concentration) of the causative species was not available.

Table 4.2 Status of shipment stoppage caused by shellfish contamination in the target sea area (1978-1999)

Date	Duration (day)	Region	Spot	Contaminated species	Toxin le (MU/g whole PSP		Causative species
24 Nov., 1988 - 10 Jan., 1989	48	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Gymnodinium catenatum
27 Nov., 1991 - 14 Jan., 1992	49	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Gymnodinium catenatum
6 Dec., 1995 - 23 Jan., 1996	49	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Gymnodinium catenatum
4 Dec., 1996 - 21 Jan., 1997	49	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Gymnodinium catenatum
7 Jan., 1998 - 28 Jan., 1998	22	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Gymnodinium catenatum
22 Dec., 1998 - 9 Mar., 1999	78	Coastal area of Yamaguchi Pref.	Sensaki Bay	Japanese oyster	Unknown	-	Unknown
20 Jan., 1994 - 28 Apr., 1994	99	Offshore island	Tsushima	Noble scallop	7.8	-	Unknown
9 Feb., 1996 - 25 May., 1996	106	Offshore island	Tsushima	Noble scallop	17.5	-	Alexandrium catenella
17 Dec., 1996 - 8 Feb., 1997	54	Offshore island	Tsushima	Noble scallop	33.9	-	Unknown
31 Mar., 1997 - 1 Apr., 1998	367	Offshore island	Tsushima	Bivalves such as oysters	135	-	Unknown

Source: Japan Fisheries Resource Conservation Association (JFRCA) (2001)

- 5 Status of recent HAB events and the associated environmental conditions
- 5.1 Status of red-tide events in 2006

5.1.1 Number of red-tide events

In 2007, a total of 56 red-tide events were recorded in the target sea area, in which 5 events induced fishery damage.

5.1.2 Number of red-tide events by month

Figure 5.1 shows the number of red-tide events that occurred in the target sea area by month. Red-tide events were recorded during January - December. The number of events was highest in June (10 events). Five events that occurred during March, June-July, and September induced fishery damage.

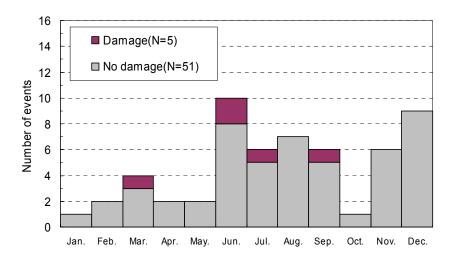


Figure 5.1 Number of red-tide events by month in the target sea area (2007)

Source: Fukuoka Fisheries and Marine Technology Research Center (2008) Nagasaki Prefectural Institute of Fisheries (2008) Saga Prefectural Genkai Fisheries Promotion Center (2008) Yamaguchi Prefectural Fisheries Research Center (2008)

5.1.3 Duration of red-tide events

Table 5.1 shows the number of red-tide events by duration (no. of days). Within the 56 events that were recorded in 2007, 28 events were under 5 days, 16 events between 6-10 days, 11 events between 11-30 days and 1 events were over 31 days. The longest duration was 63 days by *Gephyrocapsa oceanica*, which occurred in Fukuoka Bay during March-May.

Table 5.1 Number of red-tide events by duration (2007)

Region	≤ 5 days	6-10 days	11-30 days	≥ 31 days	Total	Longest duration (days)
Coastal area of Yamaguchi Pref.	4	4	2		10	13
Northern Kyushu	6	6	3(1)	1(1)	16(2)	63
Western Kyushu	6	3(1)	3(2)		12(3)	22
Remote islands	12	3	3		18	14
Total	28	16(1)	11(3)	1(1)	56(5)	-

Note:

Fukuoka Fisheries and Marine Technology Research Center (2008)

Nagasaki Prefectural Institute of Fisheries (2008)

Saga Prefectural Genkai Fisheries Promotion Center (2008)

Yamaguchi Prefectural Fisheries Research Center (2008)

5.1.4 Location of red-tide events

Table 5.2 shows the number of red-tide events by sea area and the causative species. Figure 5.2 shows the location of the red-tide events and the causative species. Figure 5.3 shows the location of the red-tide events by months. In 2007, 10 events occurred in the coastal area of Yamaguchi Prefecture, 16 events in the north Kyushu sea area, 12 events in the west Kyushu sea area and 18 events in the remote islands. Red-tide events were particularly frequent in Coastal area of Yamaguchi Pref., Fukuoka Bay (north Kyushu sea area) and Goto Island (West Kyushu sea area).

^{*1:} The numbers in the parenthesis show the number of events that induced fishery damage Source:

Table 5.2 Number of red-tide events by sea area (2007)

V		Sea area	No. of	O-washing an arian	Nista
Year	Region	Spot	events	Causative species	Note
2007	Coastal area of Yamaguchi Pref.	Between the coast of Shimonoseki and Hagi City	10	Noctiluca scintillans, Noctiluca sp. Mesodinium rubrum	
	North Kyushu sea area	Fukuoka Bay	9(1)	Gephyrocapsa oceanica, Heterosigma akashiwo, Prorocentrum triestinum, Prorocentrum triestinum, Karenia mikimotoi, Diatoms(Skeletonema costatum, Chaetoceros sp., Leptocylindrus sp., Skeletonema sp. Thalassiosira sp.)	
		Karatsu Bay	1	Akashiwo sanguinea	
		Imari Bay	1	Mesodinium rubrum	
		Hirado (Usuka/Furue Bay)	4(1)	Karenia mikimotoi, Cochlodinium polykrikoides, Noctiluca scintillans, Mesodinium rubrum	
		Others	1	Noctiluca scintillans	Hado Point
	West Kyushu	Ohmura Bay	5(1)	Karenia mikimotoi, Prorocentrum sigmoides, Skeletonema sp.	
	sea area	Tachibana Bay	1	Gyrodinium instrtatum	
		Kujuku Island	5(2)	Karenia mikimotoi, Mesodinium rubrum	
		Others	1	Prorocentrum triestinum	Coastline of Seihi
	Remote Goto Island 11 islands		11	Noctiluca scintillans, Ceratium furca, Prorocentrum triestinum, Mesodinium rubrum	
		Tsushima	7	Scrippsiella sp., Heterosigma akashiwo Noctiluca scintillans, Ceratium furca, Dictyocha fibula, Mesodinium rubrum	
		Total	56(5)	of events that induced fishery damage	

Note: The numbers in the parenthesis show the number of events that induced fishery damage Source:
Fukuoka Fisheries and Marine Technology Research Center (2008)
Nagasaki Prefectural Institute of Fisheries (2008)
Saga Prefectural Genkai Fisheries Promotion Center (2008)
Yamaguchi Prefectural Fisheries Research Center (2008)

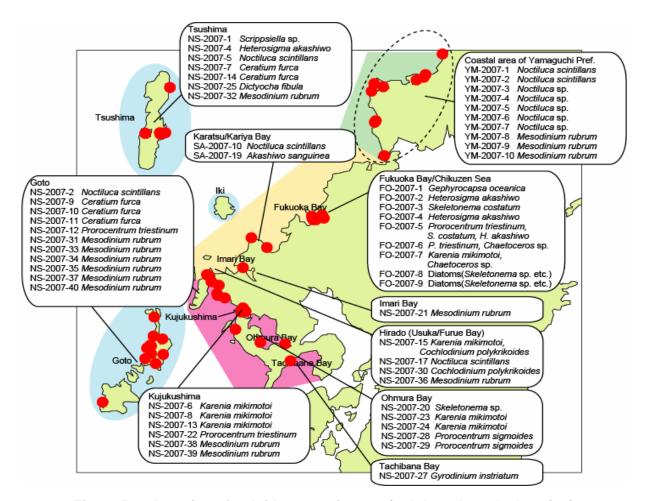


Figure 5.2 Location of red-tide events in 2007 (red dots show the location)

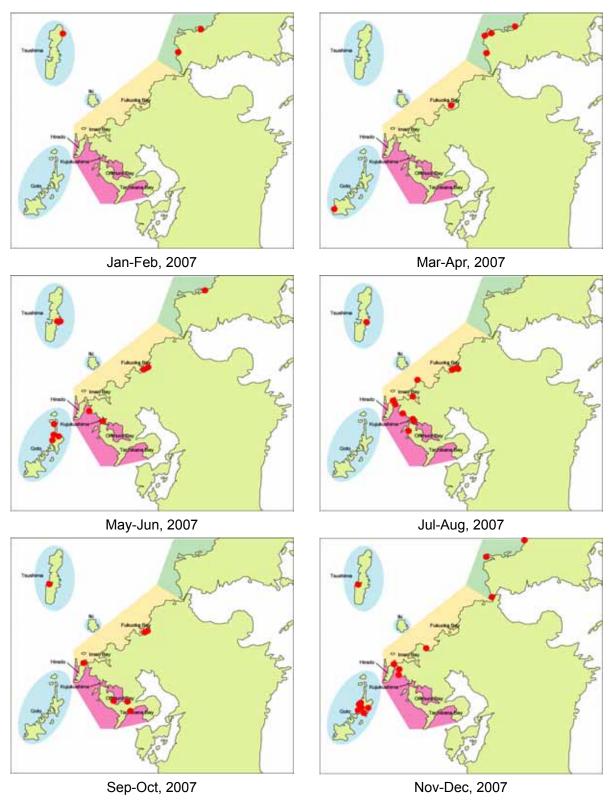


Figure 5.3 Location of red-tide events by months in 2007 (red dots show the location)

5.1.5 Types of red-tide species

Table 5.3 shows the red-tide species that were recorded in the target sea area in 2007 and their frequency of occurrences. In 2007, a total of 16 red-tide species were recorded and were comprised from the following classes: Dinophyceae (10 species), Bacillariophyceae (2 species), Raphidophyceae (1 species) and others (3 species). Several red tides were caused by a mixture of several species. The most frequently recorded red-tide species were *Mesodinium rubrum*. the Species that induced fishery damage were *Karenia mikimotoi, Cochlodinium polykrikoides* and *Gephyrocapsa oceanica* in 2007.

Table 5.3 Red-tide species recorded in the target sea area and their frequency of occurrences (2007)

occurrences (2007)									
Genus and Species	Coastal area of Yamaguchi Pref.	North Kyushu sea area	West Kyushu sea area	Remote islands	Total				
Dinophyceae									
Prorocentrum sigmoides			2		2				
Prorocentrum triestinum			1	1	2				
Cochlodinium polykrikoides		1			1				
Gyrodinium instriatum			1		1				
Akashiwo sanguinea		1			1				
Karenia mikimotoi			5(3)		5(3)				
Ceratium furca				5	5				
Scrippsiella sp.				1	1				
Noctiluca scintillans	2	2		2	6				
Noctiluca sp.	5				5				
Bacillariophyceae									
Skeletonema costatum		1			1				
Skeletonema sp.			1		1				
Raphidophyceae									
Heterosigma akashiwo		2		1	3				
Others									
Gephyrocapsa oceanica		1(1)			1(1)				
Dictyocha fibula				1	1				
Mesodinium rubrum	3	2	2	7	14				
mixture of several spp.		6(1)			6(1)				
Total	10	16(2)	12(3)	18	56(5)				

Note:

Source:

Fukuoka Fisheries and Marine Technology Research Center (2008)

Nagasaki Prefectural Institute of Fisheries (2008)

Saga Prefectural Genkai Fisheries Promotion Center (2008)

Yamaguchi Prefectural Fisheries Research Center (2008)

5.1.6 Maximum cell concentration of red-tide events

Table 5.4 shows the maximum cell concentration of each red-tide event that occurred in the target sea area in year 2006. The highest maximum cell concentration was recorded in June 2007 at Goto (Remote island) by *Prorocentrum triestinum*, which reached up to 2,232,000 cells/mL.

^{*1:} The numbers in the parenthesis show the number of events that induced fishery damage

^{*2:} The underlined species are known to cause fishery damage

Table 5.4 Maximum cell concentration of each red-tide event that occurred in the target sea area (2007)

Year	Event No.	Causative species	Density (cells or inds/mL)
2007	YM-2007-1	Noctiluca scintillans	2,110
2007	YM-2007-2	Noctiluca scintillans	2,990
2007	YM-2007-3	Noctiluca sp.	Unknown
2007	YM-2007-4	Noctiluca sp.	Unknown
2007	YM-2007-5	Noctiluca sp.	Unknown
2007	YM-2007-6	Noctiluca sp.	Unknown
2007	YM-2007-7	Noctiluca sp.	Unknown
2007	YM-2007-8	Mesodinium rubrum	19
2007	YM-2007-9	Mesodinium rubrum	4,280
2007	YM-2007-10	Mesodinium rubrum	170
2007	FO-2007-1	Gephyrocapsa oceanica	Unknown
2007	FO-2007-2	Heterosigma akashiwo	Unknown
2007	FO-2007-3	Skeletonema costatum	Unknown
2007	FO-2007-4	Heterosigma akashiwo	Unknown
2007	FO-2007-5	Skeletonema costatum, Prorocentrum triestinum, Heterosigma akashiwo	Unknown
2007	FO-2007-6	Chaetoceros sp., Prorocentrum triestinum	Unknown
2007	FO-2007-7	Chaetoceros sp., Karenia mikimotoi	Unknown
2007	FO-2007-8	Leptocylindrus sp., Chaetoceros sp., Skeletonema sp.	Unknown
2007	FO-2007-9	Skeletonema sp., Thalassiosira sp., Chaetoceros sp.	Unknown
2007	SA-2007-10	Noctiluca scintillans	3,800
2007	SA-2007-19	Akashiwo sanguinea	90
2007	NS-2007-1	Scrippsiella sp.	5,960
2007	NS-2007-2	Noctiluca scintillans	350
2007	NS-2007-4	Heterosigma akashiwo	13,850
2007	NS-2007-5	Noctiluca scintillans	1,880
2007	NS-2007-6	Karenia mikimotoi	16,500
2007	NS-2007-7	Ceratium furca	234
2007	NS-2007-8	Karenia mikimotoi	97,000
2007	NS-2007-9	Ceratium furca	730
2007	NS-2007-10	Ceratium furca	88
2007	NS-2007-11	Ceratium furca	41
2007	NS-2007-12	Prorocentrum triestinum	2,232,000
2007	NS-2007-13	Karenia mikimotoi	5,100
2007	NS-2007-14	Ceratium furca	27
2007	NS-2007-15	Karenia mikimotoi Cochlodinium polykrikoides	8,560 682
2007	NS-2007-17	Noctiluca scintillans	2,445
2007	NS-2007-20	Skeletonema sp.	4,750
2007	NS-2007-21	Mesodinium rubrum	1,250
2007	NS-2007-22	Prorocentrum triestinum	1,500
2007	NS-2007-23	Karenia mikimotoi	5,800
2007	NS-2007-24	Karenia mikimotoi	15,700
2007	NS-2007-25	Dictyocha fibula	46
2007	NS-2007-27	Gyrodinium instrtatum	541
2007	NS-2007-28	Prorocentrum sigmoides	4,040
2007	NS-2007-29	Prorocentrum sigmoides	1,400
2007	NS-2007-30	Cochlodinium polykrikoides	2,500
2007	NS-2007-31	Mesodinium rubrum	176

2007	NS-2007-32	Mesodinium rubrum	157
2007	NS-2007-33	Mesodinium rubrum	1,488
2007	NS-2007-34	Mesodinium rubrum	4,110
2007	NS-2007-35	Mesodinium rubrum	810
2007	NS-2007-36	Mesodinium rubrum	3,640
2007	NS-2007-37	Mesodinium rubrum	1,220
2007	NS-2007-38	Mesodinium rubrum	152
2007	NS-2007-39	Mesodinium rubrum	1,070
2007	NS-2007-40	Mesodinium rubrum	1,074

5.1.7 Status of red-tide induced fishery damage

Table 5.5 shows the fishery damages that were caused by the red tides in the target sea area in year 2007. Fishery damage occurred 5 times in 2007 and was during March-May, June-July and September. Causative species were *Gephyrocapsa oceanica*, *Karenia mikimotoi* and *Cochlodinium polykrikoides*. The fishery damages occurred in Fukuoka Bay, Hirado(Usuka/Furue Bay), Kujukuri Island and Ohmura Bay. Cultured fish such as amberjack and puffer fish were affected and the financial losses ranged between 500,000-19,800,000 yen.

Table 5.5 Fishery damages caused by red-tides in the target sea area (2007)

	1 10			by rou tidoo iii t		(====	
					Fis	hery damage	
Month/ Year	Event No.	Region	Spot	Causative Species	Fish/Shellfish Species	Quantity	Economic loss (1,000ye n)
March-May	FO-2007-1	North	Fukuoka Bay	Gephyrocapsa	The details were	unknown.	
, 2007		Kyushu		oceanica			
		sea area					
June-July,	NS-2007-6	West	Kujuku island	Karenia mikimotoi	Yellow tail	3,000 ind.	Unknown
2007		Kyushu					
		sea area					
June - July,	NS-2007-8	West	Kujuku island	Karenia mikimotoi	Tiger puffer	約 5000 ind.	500
2007		Kyushu			Yellow tail	20 ind.	100
		sea area			Amberjack	50 ind.	200
July, 2007	NS-2007-15	North	Hirado(Usuka	Karenia mikimotoi	Yellow tail	31 ind.	
		Kyushu	/Furue Bay)	Cochlodinium	Amberjack	20 ind.	500
		sea area		polykrikoides	Sea red	1 ind.	300
					bream		
September	NS-2007-24	West	Ohmura Bay	Karenia mikimotoi	Amberjack	17,000 ind.	19,800
, 2007		Kyushu			Yellow tail	1,800 ind.	1,260
		sea area					

Source:

Fukuoka Fisheries and Marine Technology Research Center (2008)

Nagasaki Prefectural Institute of Fisheries (2008)

5.2 Status of toxin-producing planktons and shipment stoppage in 2007

5.2.1 Status of toxin-producing planktons

Table 5.6 shows the concentration of PSP- and DSP-inducing species that were recorded in the target sea area in F.Y. 2007. The highest concentration of *Gymnodinium catenatum* was 246 cells/L, and was recorded in 12 December, 2007 at Station 1 of Senzaki Bay. The highest concentration of *Alexandrium* spp. was 394 cells/L, and was recorded in 4 April, 2007 at Station 4 of Kariya Bay. The highest concentration of *Dinophysis* spp. was 1,016 cells/L, and was recorded in 1 May, 2007 at Station 1 of Kartsu Bay.

Table 5.6 Concentration of PSP- and DSP-inducing species that were recorded in the target sea area in F.Y. 2007 (Water depth: 0 m)

Monitoring	Monitoring	Spot	Station		ing species	DSP-inducing species (cells/L)
date	organization	Орог	Otation	Gymnodinium catenatum	Alexandrium spp.	Dinophysis spp.
2007.11.6	Yamaguchi	Senzaki Bay	1	0	0	0
2007.11.15	Yamaguchi	Senzaki Bay	1	0	14	0
2007.11.26	Yamaguchi	Senzaki Bay	1	0	2	0
2007.12.3	Yamaguchi	Senzaki Bay	1	6	12	0
2007.12.10	Yamaguchi	Senzaki Bay	1	20	0	0
2007.12.12	Yamaguchi	Senzaki Bay	1	246	0	0
2007.12.17	Yamaguchi	Senzaki Bay	1	64	0	0
2007.12.20	Yamaguchi	Senzaki Bay	1	78	0	0
2007.12.26	Yamaguchi	Senzaki Bay	1	53	0	0
2008.1.4	Yamaguchi	Senzaki Bay	1	8	0	0
2008.1.9	Yamaguchi	Senzaki Bay	1	25	2	0
2008.1.15	Yamaguchi	Senzaki Bay	1	47	0	0
2008.1.21	Yamaguchi	Senzaki Bay	1	9	0	0
2008.1.30	Yamaguchi	Senzaki Bay	1	18	0	0
2008.2.4	Yamaguchi	Senzaki Bay	1	0	0	0
2008.2.12	Yamaguchi	Senzaki Bay	1	18	0	0
2008.2.25	Yamaguchi	Senzaki Bay	1	0	0	0
2007.11.6	Yamaguchi	Senzaki Bay	2	0	0	0
2007.11.15	Yamaguchi	Senzaki Bay	2	0	0	0
2007.11.26	Yamaguchi	Senzaki Bay	2	0	0	0
2007.12.3	Yamaguchi	Senzaki Bay	2	0	0	0
2007.12.10	Yamaguchi	Senzaki Bay	2	81	0	0
2007.12.12	Yamaguchi	Senzaki Bay	2	33	2	0
2007.12.17	Yamaguchi	Senzaki Bay	2	34	0	0
2007.12.20	Yamaguchi	Senzaki Bay	2	78	0	0
2007.12.26	Yamaguchi	Senzaki Bay	2	41	0	0
2008.1.4	Yamaguchi	Senzaki Bay	2	20	0	0
2008.1.9	Yamaguchi	Senzaki Bay	2	45	0	0
2008.1.15	Yamaguchi	Senzaki Bay	2	52	0	0
2008.1.21	Yamaguchi	Senzaki Bay	2	30	0	0
2008.1.30	Yamaguchi	Senzaki Bay	2	41	0	0
2008.2.4	Yamaguchi	Senzaki Bay	2	30	0	0
2008.2.12	Yamaguchi	Senzaki Bay	2	0	2	0
2008.2.25	Yamaguchi	Senzaki Bay	2	0	0	0
2007.4.10	Fukuoka	Fukuoka Bay	-	0	0	0
2007.5.9	Fukuoka	Fukuoka Bay	-	0	0	0
2007.6.8	Fukuoka	Fukuoka Bay	-	0	0	0
2007.7.5	Fukuoka	Fukuoka Bay	-	0	0	0

000== 40						
2007.7.10	Fukuoka	Fukuoka Bay	-	0	0	0
2007.7.17	Fukuoka	Fukuoka Bay	-	0	0	0
2007.7.26	Fukuoka	Fukuoka Bay	-	0	0	0
2007.8.6	Fukuoka	Fukuoka Bay	-	0	0	0
2007.8.16	Fukuoka	Fukuoka Bay	-	0	0	0
2007.8.23	Fukuoka	Fukuoka Bay	-	0	0	0
2007.8.30	Fukuoka	Fukuoka Bay	-	0	0	0
2007.9.12	Fukuoka	Fukuoka Bay	-	0	0	0
2007.10.11	Fukuoka	Fukuoka Bay	-	0	0	0
2007.11.7	Fukuoka	Fukuoka Bay	-	0	0	0
2007.12.12	Fukuoka	Fukuoka Bay	-	0	0	0
2008.1.9	Fukuoka	Fukuoka Bay	-	0	0	0
2008.2.14	Fukuoka	Fukuoka Bay	-	0	0	0
2008.3.12	Fukuoka	Fukuoka Bay	-	0	0	0
2007.4.4	Saga	Karatsu Bay	1	0	320	192
2007.5.1	Saga	Karatsu Bay	1	0	40	1016
2007.5.7	Saga	Karatsu Bay	1	0	32	8
2007.5.10	Saga	Karatsu Bay	1	0	8	752
2007.5.14	Saga	Karatsu Bay	1	0	32	136
2007.5.17	Saga	Karatsu Bay	1	0	16	760
2007.5.21	Saga	Karatsu Bay	1	0	16	24
2007.5.24	Saga	Karatsu Bay	1	0	144	8
2007.5.29	Saga	Karatsu Bay	1	0	0	104
2007.6.5	Saga	Karatsu Bay	1	0	0	56
2007.7.2	Saga	Karatsu Bay	1	0	0	184
2007.8.2	Saga	Karatsu Bay	1	0	0	0
2007.9.4	Saga	Karatsu Bay	1	0	0	8
2007.10.1	Saga	Karatsu Bay	1	0	0	0
2007.11.1	Saga	Karatsu Bay	1	0	64	64
2007.12.4	Saga	Karatsu Bay	1	0	0	96
2008.1.4	Saga	Karatsu Bay	1	0	0	208
2008.2.4	Saga	Karatsu Bay	1	0	0	16
2008.3.3	Saga	Karatsu Bay	1	0	0	0
2007.10.1	Saga	Nagoya	2	0	48	0
2007.11.1	Saga	Nagoya	2	0	0	0
2007.12.3	Saga	Nagoya	2	0	0	0
2008.1.8	Saga	Nagoya	2	0	0	0
2008.2.4	Saga	Nagoya	2	0	0	0
2008.3.3	Saga	Nagoya	2	0	0	0
2007.10.2	Saga	Kushiura	3	0	48	0
2007.11.2	Saga	Kushiura	3	0	0	0
2007.12.4	Saga	Kushiura	3	0	16	0
2008.1.7	Saga	Kushiura	3	0	0	0
2008.2.5	Saga	Kushiura	3	0	0	0
2008.3.4	Saga	Kushiura	3	0	0	0
2007.4.4	Saga	Kariya Bay	4	0	394	0
2007.5.2	Saga	Kariya Bay	4	0	32	56
2007.6.5	Saga	Kariya Bay	4	0	0	80
2007.7.3	Saga	Kariya Bay	4	0	0	32
2007.8.2	Saga	Kariya Bay	4	0	0	0
2007.9.4	Saga	Kariya Bay	4	0	0	32
2007.10.2	Saga	Kariya Bay	4	0	0	0
2007.11.2	Saga	Kariya Bay	4	0	128	0
2007.12.4	Saga	Kariya Bay	4	0	80	288
2008.1.7	Saga	Kariya Bay	4	0	0	16
2008.2.5	Saga	Kariya Bay	4	0	0	8
2008.3.4	Saga	Kariya Bay	4	0	0	48
2007.10.1	Saga	Imari Bay	5	0	0	24
2007.11.1	Saga	Imari Bay	5	0	224	0

2007.12.3	Saga	Imari Bay	5	0	0	0
2007.12.3	Saga	Imari Bay	5	0	0	96
2008.2.4	Saga	Imari Bay	5	0	0	32
2008.3.3	Saga	Imari Bay	5	0	0	0
2007.4.3	Saga	Imari Bay	6	0	0	8
2007.4.3			6	0	0	48
	Saga	Imari Bay	6		0	48
2007.6.4	Saga	Imari Bay	6	0	0	
2007.6.19 2007.6.22	Saga	Imari Bay	6	0	0	16 16
	Saga	Imari Bay			_	
2007.6.26	Saga	Imari Bay	6	0	0	16
2007.7.2	Saga	Imari Bay	6	0		0
2007.8.1	Saga	Imari Bay	6	0	16	0
2007.9.3	Saga	Imari Bay	6	0	0	0
2007.10.1	Saga	Imari Bay	6	0	48	0
2007.11.1	Saga	Imari Bay	6	0	96	0
2007.12.3	Saga	Imari Bay	6	0	0	0
2008.1.8	Saga	Imari Bay	6	0	0	32
2008.2.4	Saga	Imari Bay	6	0	0	32
2008.3.3	Saga	Imari Bay	6	0	0	0
2007.4.18	Nagasaki	Tsushima	Terashima	0	0	0
2007.5.14	Nagasaki	Tsushima	Terashima	0	2	0
2007.6.13	Nagasaki	Tsushima	Terashima	0	0	0
2007.7.12	Nagasaki	Tsushima	Terashima	0	0	0
2007.8.13	Nagasaki	Tsushima	Terashima	0	0	0
2007.9.19	Nagasaki	Tsushima	Terashima	0	0	0
2007.10.29	Nagasaki	Tsushima	Terashima	0	0	0
2007.11.14	Nagasaki	Tsushima	Terashima	0	0	0
2007.12.17	Nagasaki	Tsushima	Terashima	0	0	0
2008.1.16	Nagasaki	Tsushima	Terashima	0	0	1
2008.2.14	Nagasaki	Tsushima	Terashima	0	0	0
2008.3.12	Nagasaki	Tsushima	Terashima	0	0	0
2007.4.18	Nagasaki	Tsushima	HetaJima	0	0	0
2007.5.14	Nagasaki	Tsushima	HetaJima	0	0	0
2007.6.13	Nagasaki	Tsushima	HetaJima	0	0	0
2007.7.12	Nagasaki	Tsushima	HetaJima	7	0	0
2007.8.13	Nagasaki	Tsushima	HetaJima	3	0	0
2007.9.19	Nagasaki	Tsushima	HetaJima	0	0	0
2007.10.29	Nagasaki	Tsushima	HetaJima	0	0	0
2007.11.14	Nagasaki	Tsushima	HetaJima	54	0	0
2007.12.17	Nagasaki	Tsushima	HetaJima	0	0	1
2008.1.16	Nagasaki	Tsushima	HetaJima	0	0	0
2008.2.14	Nagasaki	Tsushima	HetaJima	0	0	0
2008.3.12	Nagasaki	Tsushima	HetaJima	0	0	0
2007.4.11	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.5.9	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.6.13	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.7.25	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.8.7	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.9.19	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.10.12	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.11.14	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2007.12.12	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	5
2008.1.23	Nagasaki	Tachibana Bay	MinamiKushiyama	2	0	0
2008.2.18	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0
2008.3.5	Nagasaki	Tachibana Bay	MinamiKushiyama	0	0	0

Source:
Fukuoka Fisheries and Marine Technology Research Center (2008)
Nagasaki Prefectural Institute of Fisheries (2008)
Saga Prefectural Genkai Fisheries Promotion Center (2008)
Yamaguchi Prefectural Fisheries Research Center (2008)

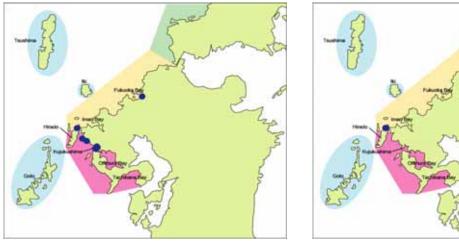
5.2.2 Status of shipment stoppage

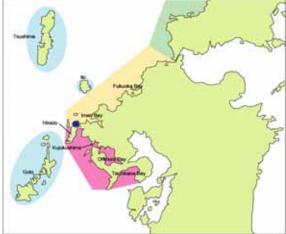
In 2007, there was no shipment stoppage.

5.3 Status of red-tide species that cause fishery damage in 2007

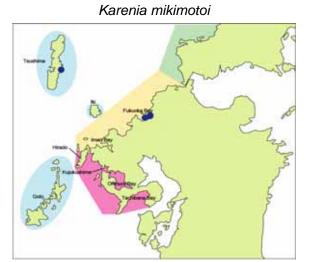
Monitoring organizations regularly monitor several red-tide species that are known to be particularly harmful to fisheries (refer to Section 2.2). Within the monitored species, the status of the following red-tide species is presented in this section, namely: the dinoflagellates *Karenia mikimotoi*, *Cochlodinium polykrikoides* and the Raphidophyceae *Heterosigma akashiwo*.

5.3.1 Karenia mikimotoi


In 2007, red tide of *Karenia mikimotoi* occurred five times. The bloom occurred from June to September. The blooms occurred throughout the target sea area, such as: Fukuoka Bay, Hirado(Usuka/Furue Bay), Kujuku island and Ohmura Bay. Figure 5.4 shows the locations of the *Karenia mikimotoi* blooms. The cell concentration during the blooms ranged between 5,100-97,000 cells/mL. Mortality of cultured fish was reported 3 times out of the *Karenia mikimotoi*.


5.3.2 Cochlodinium polykrikoides

In 2007, the bloom of *Cochlodinium polykrikoides* occurred in November and the bloom of *Cochlodinium polykrikoides* and *Karenia mikimotoi* occurred in July. Both blooms were occurred in Hirado(Usuka/Furue Bay). Figure 5.4 shows the locations of the *Cochlodinium polykrikoides* blooms. The cell concentration during the blooms ranged between 682-2,500 cells/mL. Mortality of cultured fish was reported 1 times caused by *Karenia mikimotoi*.


5.3.3 Heterosigma akashiwo

In 2007, the bloom of *Heterosigma akashiwo* occurred three times and the month is from May to July. The blooms occurred throughout the target sea area, such as:Fukuoka Bay, and Tsushima. Figure 5.4 shows the locations of the *Heterosigma akashiwo* blooms. The cell concentration during the blooms was 13,850 cells/mL. There were no fishery damages reported through the *Heterosigma akashiwo* blooms.

Cochlodinium polykrikoides

Heterosigma akashiwo

Figure 5.4 Location of blooms of harmful red-tide species in the target sea area in 2007 (blue dots show the location)

5.4 Environmental conditions during post red-tide monitoring

During the post red-tide monitoring, sea surface temperature (SST), salinity and DO are measured. Table 5.8 shows the SST, salinity and DO values obtained during the post red-tide monitoring in the target sea area in 2007. According to the monitoring results, SST ranged between 14.6-30.1 C°; salinity ranged between 24.3-35.8; and DO ranged between 4.9-11.6 mg/L.

Table 5.7 SST, salinity and DO values obtained during the post red-tide monitoring in the target sea area (2007)

Year	Event No.	Duration	Spot	SST	Salinity	DO (mg/L)
2007	YM-2007-1	2.6-2.9	Coastline of Shimonoseki City(Between Toyoura town and Yoshimi)	-	-	-
2007	YM-2007-2	2.9-2.19	Sensaki Bay	-	-	-
2007	YM-2007-3	3.23-3.30	Coastline of Shimonoseki City(Between Toyokita town and Yoshibo)	-	-	-
2007	YM-2007-4	3.26-3.30	Between Aburaya Bay and Sensaki Bay, Coastline of Hagi City	-	-	-
2007	YM-2007-5	4.9-4.12	Coastline of Shimonoseki City(Between Ogushi and Yudama of Toyoura town)	-	-	-
2007	YM-2007-6	4.19-4.24	Coastline of Hagi City (Between Ohiminato and Koshigahama)	-	-	-
2007	YM-2007-7	5.23-5.30	Coastline of Hagi City (Sanmiogasaki)	-	-	-
2007	YM-2007-8	11.29-12.6	Shimonoseki fishing port	-	-	-
2007	YM-2007-9	12.7-12.19	Ohura fishing port of Nagato City	16-17	-	-
2007	YM-2007-10	12.12-12.14	Coastline of Hagi City (Susa Town)	-	-	-
2007	FO-2007-1	3.8-5.9	Fukuoka Bay	?	?	?
2007	FO-2007-2	6.7-6.12	Fukuoka Bay	?	?	?
2007	FO-2007-3	6.22-6.27	Fukuoka Bay	?	?	?
2007	FO-2007-4	7.6-7.9	Fukuoka Bay	?	?	?
2007	FO-2007-5	7.9-7.16	Fukuoka Bay	?	?	?
2007	FO-2007-6	8.6-8.16	Fukuoka Bay	?	?	?
2007	FO-2007-7	8.23-8.28	Fukuoka Bay	?	?	?
2007	FO-2007-8	9.12-9.18	Fukuoka Bay	?	?	?
2007	FO-2007-9	9.20-9.25	Fukuoka Bay	?	?	?
2007	SA-2007-10	8.1-8.2	Hado Point	-	-	-
2007	SA-2007-19	12.21-12.24	Karatsu Bay	15.0	34.1	7.4
2007	NS-2007-1	1.16-1.18	Tsushima	14.6	0.0	6.4
2007	NS-2007-2	3.23-4.2	Goto	16.7	35.8	7.7
2007	NS-2007-4	5.25-5.29	Tsushima	19.7	33.5	5.6

2007	NS-2007-5	6.5-6.6	Tsushima	21.9	33.5	5.0
2007	NS-2007-6	6.14-7.5	Kujuku island	24.9	33.6	11.6
2007	NS-2007-7	6.14-6.16	Tsushima	-	-	-
2007	NS-2007-8	6.19-7.9	Kujuku island	-	-	-
2007	NS-2007-9	6.24-7.7	Goto	24.9	31.5	7.6
2007	NS-2007-10	6.24-6.29	Goto	22.4	34.1	7.2
2007	NS-2007-11	6.25-6.27	Goto	22.3	33.4	7.5
2007	NS-2007-12	6.27-6.29	Goto	25.2	-	-
2007	NS-2007-13	7.2-7.5	Kujuku island	-	-	-
2007	NS-2007-14	7.7-7.9	Tsushima	-	-	-
2007	NS-2007-15	7.11-7.23	Hirado(Usuka/Furue Bay)	22.3	-	6.61
2007	NS-2007-17	7.27-7.29	Hirado(Usuka/Furue Bay)	-	-	-
2007	NS-2007-20	8.22-8.27	Ohmura Bay	29.2	0.0	0.0
2007	NS-2007-21	8.23-8.24	Imari Bay	-	-	-
2007	NS-2007-22	8.24-8.25	Coastline of Seihi	-	-	-
2007	NS-2007-23	8.28-9.3	Ohmura Bay	30.1	-	-
2007	NS-2007-24	9.6-9.12	Ohmura Bay	29.8	-	11.5
2007	NS-2007-25	9.6-9.11	Tsushima	25.6	24.3	4.9
2007	NS-2007-27	9.11-9.13	Tachibana Bay	27.3	33.2	101(%)
2007	NS-2007-28	9.16-9.28	Ohmura Bay	30.0	32.7	129(%)
2007	NS-2007-29	10.3-10.5	Ohmura Bay	29.2	-	-
2007	NS-2007-30	11.15-11.16	Hirado(Usuka/Furue Bay)	-	-	-
2007	NS-2007-31	11.19-11.29	Goto	-	-	-
2007	NS-2007-32	11.21-11.21	Tsushima	-	-	-
2007	NS-2007-33	11.26-11.27	Goto	-	-	-
2007	NS-2007-34	11.29-11.30	Goto	20.1	34.4	-
2007	NS-2007-35	12.1-12.5	Goto	-	-	-
2007	NS-2007-36	12.5-12.23	Hirado(Usuka/Furue Bay)	-	-	-

2007	NS-2007-37	12.10-12.11	Goto	16.7	33.2	7.8
2007	NS-2007-38	12.11-12.12	Kujuku island	-	1	-
2007	NS-2007-39	12.12-12.13	Kujuku island	-	-	-
2007	NS-2007-40	12.12-12.19	Goto	-	-	-

Source:

Fukuoka Fisheries and Marine Technology Research Center (2008)

Nagasaki Prefectural Institute of Fisheries (2008)

Saga Prefectural Genkai Fisheries Promotion Center (2008)

Yamaguchi Prefectural Fisheries Research Center (2008)

5.5 Environmental conditions during regular HAB monitoring

5.5.1 Environmental conditions during regular red-tide monitoring

During regular red-tide monitoring, water quality parameters such as transparency, nutrients and chlorophyll-a are measured in addition to the parameters (SST, salinity and DO) measured during post red-tide monitoring. Table 5.9 shows the water-quality values obtained during the regular red-tide monitoring in the target sea area in 2007.

In Fukuoka Prefecture, regular red-tide monitoring was conducted at Fukuoka Bay during April-December. In Saga Prefecture, regular red-tide monitoring was conducted at Imari Bay, Kariya Bay, Nagoyaura and Hokawazu Bay during June-October. In Nagasaki Prefecture, regular red-tide monitoring was conducted at Imari Bay and Ohmura Bay during June-October. The above regular red-tide monitoring were conducted approximately once a month.

Table 5.8 Water-quality values obtained during the regular red-tide monitoring in the target sea area in 2007 (Water depth: 0 m)

Monitoring date	Organiza tion	Spot	Station	Transpa rency (m)	SST (C°)	Salinity	DO (mg/L)	DIN (µM)	NO3-N (µM)	NO2-N (µM)	NH4-N (µM)	PO4-P (μM)	Chl.a (µg/L)
2007.4	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.5	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.6	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.7	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.8	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.9	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.10	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.11	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.12	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.5.1	Saga	Imari Bay	1	6.5	18.3	31.0	7.6	4.17	1.54	0.12	2.51	0.11	1.5
2007.5.1	Saga	Imari Bay	2	5.2	18.1	31.9	7.3	1.53	0.46	0.09	0.98	0.13	2.2
2007.5.1	Saga	Imari Bay	3	4.0	18.4	31.7	8.3	2.20	0.90	0.09	1.20	0.10	1.8
2007.6.4	Saga	Imari Bay	1	5.5	21.8	34.0	6.8	2.16	2.01	0.04	0.11	1.16	0.5
2007.6.4	Saga	Imari Bay	2	4.2	21.7	34.1	6.4	1.12	0.86	0.02	0.24	1.75	0.9
2007.6.4	Saga	Imari Bay	3	4.8	22.0	33.6	6.8	1.39	1.18	0.02	0.20	1.45	0.7
2007.7.2	Saga	Imari Bay	1	0.4	26.1	34.0	6.4	5.30	1.70	0.13	3.46	0.09	3.5
2007.7.2	Saga	Imari Bay	2	3.9	25.4	33.6	6.2	2.35	0.84	0.11	1.40	0.16	6.6
2007.7.2	Saga	Imari Bay	3	3.5	25.2	33.2	6.2	1.95	1.07	0.09	0.79	0.18	6.2
2007.8.1	Saga	Imari Bay	1	3.7	28.2	29.6	7.9	18.95	3.71	0.17	15.07	0.12	2.4
2007.8.1	Saga	Imari Bay	2	3.3	27.9	29.7	7.0	3.06	0.86	0.16	2.04	0.23	4.1
2007.8.1	Saga	Imari Bay	3	4.1	28.2	29.5	6.7	5.76	2.52	0.15	3.09	0.16	1.6
2007.9.3	Saga	Imari Bay	1	2.7	28.5	32.2	6.4	4.60	2.64	0.42	1.54	0.22	12.0
2007.9.3	Saga	Imari Bay	2	1.8	28.5	32.5	5.7	1.39	0.76	0.20	0.42	0.27	14.9

2007.9.3	Saga	Imari Bay	3	2.1	27.5	30.0	6.9	8.78	5.25	0.75	2.79	0.29	16.2
2007.10.1	Saga	Imari Bay	1	3.9	26.0	30.6	7.3	9.50	1.54	0.14	7.82	0.40	7.2
2007.10.1	Saga	Imari Bay	2	3.1	26.1	30.6	6.7	3.61	0.96	0.75	1.90	0.54	10.1
2007.10.1	Saga	Imari Bay	3	3.9	26.0	32.7	6.3	18.35	2.72	1.44	14.19	1.01	8.6
2007.5.2	Saga	Kariya Bay	Α	6.5	18.0	32.8	8.6	5.26	1.24	0.14	3.88	0.34	3.7
2007.6.5	Saga	Kariya Bay	Α	6.1	22.6	33.4	7.9	2.58	2.34	0.10	0.14	6.51	2.4
2007.7.3	Saga	Kariya Bay	Α	2.1	25.3	28.5	7.0	10.09	7.74	0.29	2.05	0.12	7.2
2007.8.2	Saga	Kariya Bay	Α	4.6	27.4	32.1	8.1	4.95	2.13	0.24	2.58	0.11	7.6
2007.9.4	Saga	Kariya Bay	Α	3.9	28.0	32.0	6.1	6.61	3.86	0.30	2.45	0.16	11.6
2007.10.2	Saga	Kariya Bay	Α	4.9	25.4	33.0	7.4	3.84	1.38	0.13	2.33	0.11	6.2
2007.5.1	Saga	Nagoya	4	7.5	18.0	32.4	7.1	4.73	2.68	0.12	1.94	0.19	1.3
2007.6.4	Saga	Nagoya	4	7.0	20.8	32.5	7.2	1.17	0.94	0.04	0.19	1.09	1.6
2007.7.3	Saga	Nagoya	4	6.2	23.4	34.1	6.2	9.00	4.22	0.19	4.59	0.32	2.0
2007.8.1	Saga	Nagoya	4	3.7	26.1	29.7	7.3	2.92	1.31	0.18	1.43	0.18	3.4
2007.9.3	Saga	Nagoya	4	4.7	27.5	32.0	5.8	15.49	11.30	0.53	3.65	0.37	4.2
2007.10.1	Saga	Nagoya	4	8.2	25.3	33.0	7.3	5.35	1.93	0.17	3.25	0.18	8.0
2007.5.2	Saga	Hokawadu	5	10.9	18.1	32.6	8.7	3.86	1.87	0.17	1.82	0.19	2.0
2007.6.5	Saga	Hokawadu	5	4.3	21.8	33.8	8.5	2.37	2.19	0.04	0.13	1.34	2.4
2007.7.3	Saga	Hokawadu	5	2.3	24.9	29.6	6.4	15.28	11.22	0.31	3.76	0.20	3.3
2007.8.2	Saga	Hokawadu	5	4.8	25.8	33.9	7.4	1.56	0.52	0.14	0.90	0.14	4.8
2007.9.4	Saga	Hokawadu	5	5.3	27.9	32.9	7.0	7.22	3.46	0.17	3.59	0.16	3.5
2007.10.2	Saga	Hokawadu	5	4.0	25.2	33.2	7.2	2.96	1.26	0.13	1.57	0.15	6.2
2007.6.19	Nagasaki	Imari Bay	1	7.5	22.3	34.0	4.8	0.67	0.24	0.05	0.39	0.11	0.9
2007.6.19	Nagasaki	Imari Bay	3	6.0	21.8	33.9	4.7	0.68	0.33	0.06	0.30	0.15	1.1
2007.6.19	Nagasaki	Imari Bay	4	9.0	21.6	34.0	4.8	1.03	0.50	0.04	0.50	0.42	2.2
2007.8.28	Nagasaki	Imari Bay	1	10.5	28.6	33.2	4.4	1.03	0.54	0.09	0.41	0.12	8.0
2007.8.28	Nagasaki	Imari Bay	3	5.5	29.9	33.2	4.6	0.60	0.21	0.07	0.32	0.09	2.0
2007.8.28	Nagasaki	Imari Bay	4	8.5	29.6	33.2	4.6	0.68	0.19	0.06	0.43	0.09	0.7
2007.7.31	Nagasaki	Omura Bay	b	3.0	31.3	30.6	4.9	0.94	0.24	0.10	0.60	0.08	0.4
2007.7.31	Nagasaki	Omura Bay	С	3.0	31.6	30.2	5.1	0.63	0.31	0.06	0.27	0.09	1.5
2007.7.31	Nagasaki	Omura Bay	Р	4.0	29.1	30.8	4.8	2.13	1.00	0.07	1.06	0.08	1.2
2007.7.31	Nagasaki	Omura Bay	Z	3.8	28.9	30.8	4.9	0.53	0.16	0.07	0.30	0.07	2.1
2007.10.11	Nagasaki	Omura Bay	b	3.0	31.3	30.6	4.9	0.25	0.15	0.04	0.05	0.08	4.9
2007.10.11	Nagasaki	Omura Bay	С	3.0	31.6	30.2	5.1	1.57	0.52	0.28	0.76	0.40	1.3
2007.10.11	Nagasaki	Omura Bay	Р	4.0	29.1	30.8	4.8	0.40	0.26	0.05	0.09	0.24	0.7
2007.10.11	Nagasaki	Omura Bay	Z	3.8	28.9	30.8	4.9	1.51	0.66	0.11	0.75	0.34	0.7

Note:

1*: The values of Fukuoka Prefecture are the average of 6 monitoring stations.
2*: The nutrient concentration units of Saga Prefecture are in μg-at/L.
3*: The DO concentration units of Nagasaki Prefecture are in mL/L.

Source:

Fukuoka Fisheries and Marine Technology Research Center (2008) Nagasaki Prefectural Institute of Fisheries (2008) Saga Prefectural Genkai Fisheries Promotion Center (2008)

5.5.2 Environmental conditions during regular toxin-producing plankton monitoring
Table 5.10 shows the water-quality values obtained during the regular toxin-producing plankton monitoring in the target sea area in 2007.

Table 5.9 Water-quality values obtained during the regular toxin-producing plankton monitoring in the target sea area in 2007 (Water depth: 0 m)

		monitoring	III LIIC I	arger se	aaica	1111 200	ii (vva	ici uci	J. 0 11	''	1		
Monitoringdate	Organiz- atoin	Spot	Survey point	Trans parency (m)	SST (C°)	Salinity	DO (mg/L)	DIN (µM)	NO3-N (µM)	NO2-N (µM)	NH4-N (µM)	PO4-P (μM)	Chl.a (µg/L)
2007.11.6	Yamaguchi	Sensaki Bay	1	_	20.6	33.9	_	_	_	_	_	_	_
2007.11.15	Yamaguchi	Sensaki Bay	1	_	19.6	33.9	_	_	_	_	_	_	_
2007.11.26	Yamaguchi	Sensaki Bay	1	_	17.6	34.1	_	_	_	_	_	_	_
2007.12.3	Yamaguchi	Sensaki Bay	1	_	16.5	33.9	_	_	_	_	_	_	_
2007.12.10	Yamaguchi	Sensaki Bay	1	_	16.1	34.2	_	_	_	_	_	_	_
2007.12.12	Yamaguchi	Sensaki Bay	1	_	16.0	33.5	_	_	_	_	_	_	_
2007.12.17	Yamaguchi	Sensaki Bay	1	_	15.4	34.0	_	_	_	_	_	_	_
2007.12.17	Yamaguchi	Sensaki Bay	1	_	15.1	34.1	_	_	_	_	_	_	-
2007.12.26	Yamaguchi	Sensaki Bay	1	_	14.4	33.7	_	_	_	_	_	_	-
2007.12.20		Sensaki Bay	1	_	13.0	34.2	-	_	_	_			
2008.1.4	Yamaguchi	İ	1	_	14.2	34.4	_		_	-	_	_	-
2008.1.15	Yamaguchi	Sensaki Bay	1	-	13.6		_	_	_	_	_		-
	Yamaguchi	Sensaki Bay				33.8							
2008.1.21	Yamaguchi	Sensaki Bay	1	-	12.5	33.9	-	-	-	-	-	-	-
2008.1.30	Yamaguchi	Sensaki Bay	1	-	11.9	33.9	-	-	-	-	-	-	-
2008.2.4	Yamaguchi	Sensaki Bay	1	-	9.9	32.1	-	-	-	-	-	-	-
2008.2.12	Yamaguchi	Sensaki Bay	1	-	10.9	33.9	-	-	-	-	-	-	-
2008.2.25	Yamaguchi	Sensaki Bay	1	-	10.4	34.2	-	-	-	-	-	-	-
2007.11.6	Yamaguchi	Sensaki Bay	2	-	20.0	33.8	-	-	-	-	-	-	-
2007.11.15	Yamaguchi	Sensaki Bay	2	-	19.2	33.6	-	-	-	-	-	-	-
2007.11.26	Yamaguchi	Sensaki Bay	2	-	17.0	34.0	-	-	-	-	-	-	-
2007.12.3	Yamaguchi	Sensaki Bay	2	-	16.3	33.9	-	-	-	-	-	-	-
2007.12.10	Yamaguchi	Sensaki Bay	2	-	14.8	34.0	-	-	-	-	-	-	-
2007.12.12	Yamaguchi	Sensaki Bay	2	-	16.6	34.2	-	-	-	-	-	-	-
2007.12.17	Yamaguchi	Sensaki Bay	2	-	14.8	33.9	-	-	-	-	-	-	-
2007.12.20	Yamaguchi	Sensaki Bay	2	-	14.4	34.0	-	-		-	-		-
2007.12.26	Yamaguchi	Sensaki Bay	2	-	15.0	34.0	-	-	-	-	-	-	-
2008.1.4	Yamaguchi	Sensaki Bay	2	-	12.9	34.2	-	-	-	-	-	-	-
2008.1.9	Yamaguchi	Sensaki Bay	2	-	13.6	34.3	-	-	-	-	-	-	-
2008.1.15	Yamaguchi	Sensaki Bay	2	-	13.1	33.3	-	-	-	-	-	-	-
2008.1.21	Yamaguchi	Sensaki Bay	2	-	12.7	33.9	-	-	-	-	-	-	-
2008.1.30	Yamaguchi	Sensaki Bay	2	-	12.3	34.0	-	-	-	-	-	-	-
2008.2.4	Yamaguchi	Sensaki Bay	2	-	11.0	33.6	-	-	-	-	-	-	-
2008.2.12	Yamaguchi	Sensaki Bay	2	-	11.1	34.0	-	-		-	-		-
2008.2.25	Yamaguchi	Sensaki Bay	2	-	9.8	34.0	-	-		-	-		-
2007.4.10	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.5.9	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.6.8	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.7.5	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.7.10	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.7.17	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.7.26	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.8.6	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.8.16	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.8.23	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-	-	-	-
2007.8.30	Fukuoka	Fukuoka Bay	-	-	-	-	-	-	-	-		-	-
2007.9.12	Fukuoka	Fukuoka Bay	-	-	-	-	_	-	-	-	-	-	_
2007.10.11	Fukuoka	Fukuoka Bay	_	_	_	_	_	_	_	_	_	_	_

2007.11.7	Fukuoka	Eukuoko Pov					1						
2007.11.7	Fukuoka	Fukuoka Bay Fukuoka Bay	-	_	_	-	-	_	_	_	_	_	
2007.12.12	Fukuoka	Fukuoka Bay	_	_	_	_		_	_	_	_	_	-
2008.2.14	Fukuoka	Fukuoka Bay	_	_	-	_	_	_	_	-	-	_	_
2008.3.12	Fukuoka	Fukuoka Bay		_	-			_	-	-	-	-	-
2007.4.4	Saga	Karatsu Bay	1	_	14.7	33.3	8.2	3.22	1.47	0.43	1.32	0.16	1.4
2007.5.1	Saga	1	1	_	19.0	34.2	7.8	2.03	1.05	0.43	0.89	0.10	1.4
2007.5.7	Saga	Karatsu Bay Karatsu Bay	1	_	19.0	- 34.2	7.0	2.03	1.05	0.09	-	0.13	1.4
2007.5.10	Saga	Karatsu Bay	1	_	_	_		_	_	_	_	_	_
2007.5.10		Karatsu Bay	1	_	_	_		_	_	_	_	_	_
2007.5.14	Saga	Karatsu Bay	1	_				-					
2007.5.17	Saga Saga	Karatsu Bay	1	-	-	-	-	-	-	-	-	-	-
2007.5.24	Saga	Karatsu Bay	1	-	-	-	-	-	-	-	-	-	-
2007.5.29	Saga	Karatsu Bay	1		_	_		_	_		_	_	_
2007.5.29	Saga	Karatsu Bay	1	_	22.3	34.2	8.1	1.48	1.30	0.03	0.15	0.84	3.8
2007.7.2		1	1	_	23.3	31.1	7.2	3.80	2.00	0.05	1.65	0.20	2.6
2007.7.2	Saga Saga	Karatsu Bay	1	_	27.0	32.8	8.6	6.29	5.14	0.13	0.98	0.20	4.4
2007.8.2		Karatsu Bay	1	_	27.8	33.5	7.4	5.07	3.37	0.18	1.50	0.17	3.0
	Saga	Karatsu Bay	1	_				2.51	0.93		1.45	0.20	
2007.10.1	Saga	Karatsu Bay Karatsu Bay			26.0 21.2	33.6	6.7			0.13	1.62		2.7
2007.11.1	Saga Saga	Karatsu Bay Karatsu Bay	1	-	16.6	33.9 34.4	6.9 8.0	3.15 2.49	1.47 1.47	0.06	0.66	0.35 0.25	3.1 1.8
2007.12.4	Saga	Karatsu Bay	1		14.2	34.5	8.4	6.41	3.34	0.92	2.14	0.23	1.0
2008.1.4	Saga	Karatsu Bay	1	8.0	12.1	34.1	8.2	4.67	3.49	0.92	0.85	0.31	2.0
	Ť										1.64		
2008.3.3	Saga	Karatsu Bay	1	5.0	11.5	34.7	9.0	5.95	3.85	0.45		0.38	1.0
2007.10.1	Saga	Nagoya	2	4.0	25.6	32.1	8.0	5.35	1.93	0.17	3.25	0.18	8.0
2007.11.1	Saga	Nagoya	2	4.9	22.0	33.5	5.7	7.71	2.19	0.54	4.98	0.69	2.4
2007.12.3	Saga	Nagoya	2	6.5	17.7	34.2	6.9	6.39	3.47	0.58	2.33	0.49	0.3
2008.1.8	Saga	Nagoya	2	8.8	14.5	34.1	4.8	4.75	3.26	0.72	0.78	0.35	0.3
2008.2.4	Saga	Nagoya	2	9.4	12.6	34.0	7.8	4.23	2.59	0.48	1.16	0.29	1.9
2008.3.3	Saga	Nagoya	2	9.9	12.4	34.6	8.3	12.38	2.12 3.03	0.42	9.85	0.26	1.4
2007.10.2	Saga	Kushiura Kushiura	3	4.8 5.0	25.1 21.1	33.1 33.0	6.4	5.91 5.01	2.59	0.42	2.47 1.68	0.32	1.4 0.9
2007.11.2	Saga		3	5.0				4.80	2.59		1.52		
	Saga	Kushiura	3	5.4	17.6 15.2	34.3	6.8		2.84	0.60	1.39	0.31	1.3
2008.1.7	Saga	Kushiura Kushiura	3	5.3	13.1	34.4 34.3	5.5 7.8	5.07 3.16	1.41	0.84	1.36	0.37	1.4
	Saga		3										1.2
2008.3.4	Saga	Kushiura	4	7.0	12.2	34.8 33.0	7.9 8.3	2.58	1.51	0.35	1.28	0.23	-
2007.4.4	Saga	Kariya Bay			15.9	32.9	8.9	-	-	-	-	-	-
2007.5.2	Saga	Kariya Bay	4	7.0	18.0			-	-	-	-		-
2007.6.5	Saga	Kariya Bay	4	6.5	23.1	33.4	8.2	-	-	-	-	-	-
2007.7.3	Saga	Kariya Bay	4	2.3	24.5	30.3	8.0	-	-	-	-	-	-
2007.8.2	Saga	Kariya Bay	4	5.9	27.6	31.4	7.5	-	-	-	-	-	-
2007.9.4	Saga	Kariya Bay	4	5.5 5.1	28.4 25.7	31.4	7.3 7.4	3.57	1.41	0.18	1.98	0.12	4.2
2007.10.2	Saga Saga	Kariya Bay Kariya Bay	4	5.1	21.7	33.3 33.5	6.5	10.45	3.40	0.16	6.29	0.12	
2007.11.2			4								3.07		1.6
2007.12.4	Saga	Kariya Bay	4	6.7 7.8	17.4	34.2 34.4	7.0 7.1	5.12 4.57	1.73 2.69	0.32	1.08	0.18	3.2
2008.1.7	Saga	Kariya Bay		5.7	14.8	33.6	8.9	5.65	2.09	0.80	2.95	0.30	1.7
2008.2.5	Saga	Kariya Bay	4	9.0	11.4								7.2
2008.3.4	Saga	Kariya Bay		3.9	11.9 26.0	34.6	8.1	3.23	1.66	0.28	1.29	0.21	7.2
	Saga	Imari Bay	5		26.0	30.6	7.3	9.50	2.04	0.14	7.82	0.40	7.2 6.8
2007.11.1	Saga	Imari Bay	5	3.8	21.0	33.0	7.3	3.87	2.04	0.01	1.82	0.23	6.8
2007.12.3	Saga	Imari Bay	5	5.6	16.3	34.6	7.7	2.50	1.74	0.19	0.58	0.21	1.2
2008.1.8	Saga	Imari Bay	5	5.7	12.9	34.3	8.4	2.09	0.90	0.25	0.93	0.15	3.2
2008.2.4	Saga	Imari Bay	5	5.8	9.3	33.5	10.0	3.85	0.97	0.32	2.56	0.09	2.2
2008.3.3	Saga	Imari Bay	5	4.7	10.6	34.1	9.7	2.91	1.11	0.28	1.45	0.22	-
2007.4.3	Saga	Imari Bay	6	7.5	15.6	32.4	8.0	_	-	-	-	-	-
2007.5.1	Saga	Imari Bay	6	6.0	18.0	32.4	7.6	_	-	-	-	-	-
2007.6.4	Saga	Imari Bay	6	6.5	21.2	33.7	7.5	-	-	-	-	-	-
2007.6.19	Saga	Imari Bay	6	-	-	-	 -	-	-	-	-	-	-
2007.6.22	Saga	Imari Bay	6	-	-	-	-	_	-	-	-	_	

2007.6.26	Cogo	Imari Pay	6		1								
2007.6.26	Saga Saga	Imari Bay Imari Bay	6	5.3	24.6	32.9	6.4	-		-	_	-	_
2007.7.2	Saga	Imari Bay	6	7.2	26.4	30.2	7.5	_			_	_	_
2007.9.3	Saga	Imari Bay	6	4.9	27.7	33.3	5.7	_					_
2007.9.3	Saga	Imari Bay	6	6.8	25.3	33.2	6.4	4.49	2.38	0.78	1.33	0.30	1.4
2007.10.1	Saga	Imari Bay	6	6.1	21.9	33.5	6.8	2.51	1.16	0.76	0.97	0.22	- 1.4
2007.11.3	Saga	Imari Bay	6	6.7	17.4	34.5	7.2	4.78	2.36	0.38	2.04	0.20	0.3
2008.1.8	Saga	Imari Bay	6	8.0	14.5	34.3	5.8	4.74	2.79	0.69	1.25	0.27	1.3
2008.2.4	Saga	Imari Bay	6	9.3	12.6	34.2	8.5	1.82	0.91	0.26	0.65	0.23	2.0
2008.3.3	Saga	Imari Bay	6	10.3	12.3	34.7	8.8	3.22	1.51	0.29	1.43	0.18	-
			Terash					-	-				
2007.4.18	Nagasaki	Tsushima	ima Terash	-	15.7	34.2	-	-	-	-	-	-	-
2007.5.14	Nagasaki	Tsushima	ima	8.0	17.8	34.1	-	-	-	-	-	-	-
2007.6.13	Nagasaki	Tsushima	Terash ima	5.0	21.3	33.8	-	-	-	-	-	-	-
2007.7.12	Nagasaki	Tsushima	Terash ima	7.0	22.7	33.0	-	-	-	-	-	-	-
2007.8.13	Nagasaki	Tsushima	Terash ima	6.5	27.3	32.9	_	_	_	_	_	_	_
2007.0.10	ragasaki	Todomina	Terash	0.0	27.0	02.0							
2007.9.19	Nagasaki	Tsushima	ima Terash	=	26.8	32.1	-	-	-	=	-	-	-
2007.10.29	Nagasaki	Tsushima	ima Terash	7.3	22.3	33.5	-	-	-	-	-	-	-
2007.11.14	Nagasaki	Tsushima	ima	-	20.7	33.6	-	-	-	-	-	-	-
2007.12.17	Nagasaki	Tsushima	Terash ima	_	16.6	34.1	_	_	_	-	_	_	_
2008.1.16	Nagasaki	Tsushima	Terash ima	_	14.7	34.0	_	_	_	_	_	_	_
2008.2.14	Nagasaki	Tsushima	Terash ima		13.0	34.2	_	_	_	_	_	_	_
2008.3.12		Tsushima	Terash ima	8.5	13.8	34.3	_	_	_	_	_	_	_
	Nagasaki		HetaJi				-	-	-	-	-	-	-
2007.4.18	Nagasaki	Tsushima	ma HetaJi	11.0	15.7	34.0	-	-	-	-	-	-	-
2007.5.14	Nagasaki	Tsushima	ma HetaJi	8.0	18.3	33.8	-	-	-	-	-	-	-
2007.6.13	Nagasaki	Tsushima	ma HetaJi	7.5	22.0	33.5	-	-	-	-	-	-	-
2007.7.12	Nagasaki	Tsushima	ma	8.0	23.1	33.1	-	-	-	-	-	-	-
2007.8.13	Nagasaki	Tsushima	HetaJi ma	8.8	27.8	32.4	-	-	-	-	-	-	-
2007.9.19	Nagasaki	Tsushima	HetaJi ma	7.3	27.4	32.0	-	-	-	-	-	-	-
2007.10.29	Nagasaki	Tsushima	HetaJi ma	8.8	22.4	33.4	_	_	-	-	-	_	_
			HetaJi										
2007.11.14	Nagasaki	Tsushima	ma HetaJi	12.0	20.8	33.6	-	-	-	-	-	-	-
2007.12.17	Nagasaki	Tsushima	ma	12.0	17.0	34.0	-	-	-	-	-	-	-
2008.1.16	Nagasaki	Tsushima	HetaJi ma	15.5	13.7	34.0	-	-	-	-	-	-	-
2008.2.14	Nagasaki	Tsushima	HetaJi ma	8.5	13.7	34.1	-	-	-	-	-	-	-
2008.3.12	Nagasaki	Tsushima	HetaJi ma	9.5	14.5	34.3	-	-	-	-	-	-	_
2007.4.11	Nagasaki	Tachibana Bay	MinamiKus hiyama	9.0	18.1	35.4	_	_	_	_	_	_	_
2007.4.11	Nagasaki	Tachibana Bay	MinamiKus hiyama	14.0	19.3	-	_	_				_	_
			MinamiKus	8.0				_					
2007.6.13	Nagasaki	Tachibana Bay	hiyama MinamiKus		21.7	35.1	-					-	-
2007.7.25	Nagasaki	Tachibana Bay	hiyama MinamiKus	3.0	24.7	33.1	-	-	-	-	-	-	-
2007.8.7	Nagasaki	Tachibana Bay	hiyama MinamiKus	7.0	26.5	33.2	-	-	-	-	-	-	-
2007.9.19	Nagasaki	Tachibana Bay	hiyama MinamiKus	4.0	26.8	32.4	-	-	-	-	-	-	-
2007.10.12	Nagasaki	Tachibana Bay	hiyama	11.0	24.9	32.6	-	-	-	-	-	-	-

2007.11.14	Nagasaki	Tachibana Bay	MinamiKus hiyama	11.0	20.4	33.5	-	-	-	-	-	-	-
2007.12.12	Nagasaki	Tachibana Bay	MinamiKus hiyama	15.0	17.3	33.6	-	-	-	-	-	-	-
2008.1.23	Nagasaki	Tachibana Bay	MinamiKus hiyama	10.0	13.4	33.4	-	-	-	-	-	-	-
2008.2.18	Nagasaki	Tachibana Bay	MinamiKus hiyama	9.0	12.1	33.9	-	-	1	ı	-	-	-
2008.3.5	Nagasaki	Tachibana Bay	MinamiKus hiyama	11.0	12.1	33.8	-	-	1	1	-	-	-

Note: The nutrient concentration units of Saga Prefecture are in $\mu\text{g-at/L}.$

Source: Fukuoka Fisheries and Marine Technology Research Center (2008) Nagasaki Prefectural Institute of Fisheries (2008) Saga Prefectural Genkai Fisheries Promotion Center (2008)

5.6 Meteorological conditions during regular red-tide monitoring

The reports of the monitoring organizations of Saga and Nagasaki Prefectures provide information on the meteorological conditions observed during the regular red-tide monitoring. Table 5.11 shows the meteorological conditions observed during the regular red-tide monitoring in the target sea area in 2007.

Table 5.10 Meteorological conditions observed during the regular red-tide monitoring in the target sea area (2007)

Monitoring date	Organi- zation	Spot	Survey point	Observation time	Weather	Cloud	Wind direction	Wind scale (Beaufort scale)
2007.4	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.5	Fukuoka	Fukuoka Bay	-	-	ı	-	-	-
2007.6	Fukuoka	Fukuoka Bay	-	-	-	-	-	1
2007.7	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.8	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.9	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.10	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.11	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.12	Fukuoka	Fukuoka Bay	-	-	-	-	-	-
2007.5.1	Saga	Imari Bay	1	9:35	曇	10	W	2
2007.5.1	Saga	Imari Bay	2	9:46	曇	10	S	2
2007.5.1	Saga	Imari Bay	3	10:05	曇	10	W	2
2007.6.4	Saga	Imari Bay	1	9:27	晴	10	-	-
2007.6.4	Saga	Imari Bay	2	9:40	晴	10	-	-
2007.6.4	Saga	Imari Bay	3	9:52	晴	9	-	-
2007.7.2	Saga	Imari Bay	1	9:20	雨	10	N	0
2007.7.2	Saga	Imari Bay	2	9:30	雨	10	N	0
2007.7.2	Saga	Imari Bay	3	9:40	雨	10	N	1
2007.8.1	Saga	Imari Bay	1	9:20	晴	0	S	1
2007.8.1	Saga	Imari Bay	2	9:32	晴	0	S	1
2007.8.1	Saga	Imari Bay	3	9:45	晴	0	S	1
2007.9.3	Saga	Imari Bay	1	9:15	曇	10	NW	1
2007.9.3	Saga	Imari Bay	2	9:25	曇	9	NW	1
2007.9.3	Saga	Imari Bay	3	9:40	曇	10	NW	1
2007.10.1	Saga	Imari Bay	1	9:30	晴	1	N	1
2007.10.1	Saga	Imari Bay	2	9:40	晴	0	N	2
2007.10.1	Saga	Imari Bay	3	9:36	晴	2	N	1
2007.5.2	Saga	Kariya Bay	Α	10:02	曇	10	W	2
2007.6.5	Saga	Kariya Bay	Α	10:03	曇	10	SE	1
2007.7.3	Saga	Kariya Bay	Α	10:25	曇	10	W	1
2007.8.2	Saga	Kariya Bay	Α	10:05	曇	9	NE	3
2007.9.4	Saga	Kariya Bay	Α	9:54	晴	2	-	-
2007.10.2	Saga	Kariya Bay	Α	10:49	曇	8	EW	2
2007.5.1	Saga	Nagoya	4	11:55	曇	10	SW	2
2007.6.4	Saga	Nagoya	4	11:40	晴	10	NE	1
2007.7.3	Saga	Nagoya	4	11:25	曇	10	W	1
2007.8.1	Saga	Nagoya	4	11:45	晴	0	SW	1
2007.9.3	Saga	Nagoya	4	11:07	曇	5	NW	1
2007.10.1	Saga	Nagoya	4	12:05	晴	0	N	2
2007.5.2	Saga	Hokawadu	5	10:32	曇	7	NE	1
2007.6.5	Saga	Hokawadu	5	10:33	曇	10	SE	1
2007.7.3	Saga	Hokawadu	5	10:50	曇	10	W	1
2007.8.2	Saga	Hokawadu	5	10:40	曇	9	N	1
2007.9.4	Saga	Hokawadu	5	10:25	晴	2	NW	2

2007.10.2	Saga	Hokawadu	5	11:18	晴	9	N	1
2007.6.19	Nagasaki	Imari Bay	1	11:31	1	5	NE	6
2007.6.19	Nagasaki	Imari Bay	3	10:40	1	4	NW	6
2007.6.19	Nagasaki	Imari Bay	4	10:54	1	4	NW	5
2007.8.28	Nagasaki	Imari Bay	1	8:44	-	4	SW	3
2007.8.28	Nagasaki	Imari Bay	3	10:17	1	5	W	3
2007.8.28	Nagasaki	Imari Bay	4	9:56	-	6	SW	4
2007.7.31	Nagasaki	Omura Bay	b	14:00	-	2	NW	2
2007.7.31	Nagasaki	Omura Bay	С	13:26	-	2	NW	4
2007.7.31	Nagasaki	Omura Bay	Р	10:29	1	2	SW	1
2007.7.31	Nagasaki	Omura Bay	Z	11:42	-	2	S	2
2007.10.11	Nagasaki	Omura Bay	b	14:00	1	2	Ν	7
2007.10.11	Nagasaki	Omura Bay	С	13:26	-	2	NW	7
2007.10.11	Nagasaki	Omura Bay	Р	10:29	1	2	Ν	6
2007.10.11	Nagasaki	Omura Bay	Z	11:42	-	2	NW	4

Source:

Fukuoka Fisheries and Marine Technology Research Center (2008)

Nagasaki Prefectural Institute of Fisheries (2008)

Saga Prefectural Genkai Fisheries Promotion Center (2008)

Yamaguchi Prefectural Fisheries Research Center (2008)

6 Monitoring with satellite remote sensing images

6.1 Utilization status of satellite remote sensing chlorophyll images in local fisheries agencies Since 2004, Yamaguchi Prefecture Fisheries Research Center has been developing red-tide monitoring methods by using satellite chlorophyll-a images (Yamaguchi Prefecture, 2007).

Distribution of chlorophyll-a concentration in the coastal area of Yamaguchi Prefecture before and during a *Karenia mikimotoi* bloom in August 2006 was estimated from satellite remote sensing images (Fig. 6.1). Areas of high chlorophyll-a concentration were observed on the coast of Hohoku Town and along the coast between Hagi City and Abu Town by satellite, and red-tide warnings were announced during the above *Karenia mikimotoi* bloom. These satellite chlorophyll images used in the above analysis were obtained from the website of JAXA's Earth Observation Research Center (EORC).

Satellite chlorophyll-a images were also used to understand the movement of red tide. Miyahara et al. (2005) reported that the movement of *Cochlodinium polykrikoides* bloom from Korean Peninsula was traced by referring to the satellite images of chlorophyll-a concentration observed by MODIS, and the existence of *C. polykrikoides* was confirmed by a field survey. In this way, local fisheries agencies have been using satellite chlorophyll images to determine monitoring sites based on the movement of high chlorophyll-a patches. This utilization is useful for mitigation of red tide and announcement of warning.

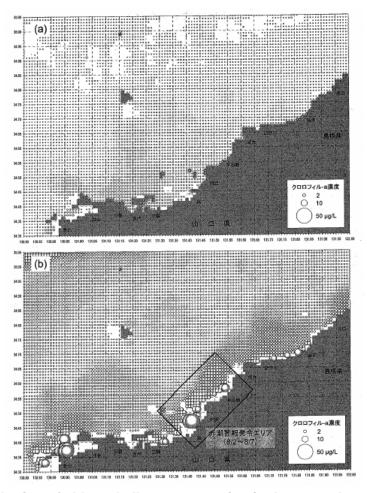


Figure 6.1 Distribution of chlorophyll-a concentration in the coastal area of Yamaguchi Prefecture before and during a *Karenia mikimotoi* bloom in August 2006 (estimated from satellite remote sensing images)

Source: Yamaguchi Prefectural Fisheries Research Center (2007)

6.2 Utilization status of satellite remote sensing chlorophyll images in local fisheries agencies

Two organizations provide satellite chlorophyll data in the northwest sea area in Kyushu
region. The information of those provided data is shown in Table 6.1.

Table 6.1 Information of provided data by Marine Environmental Watch website and MODIS Near Real Time Database website

Data source	Management	Provided sea area	Resolution	Sensor	Satellite	
Marine	Ministry of the	32.4-35N	1Km	MODIS	Aqua an	nd
Environmental	Environment/	128.5-131.5W	(Image and		Terra	
Watch	Northwest		binary data)			
	Pacific Region					
	Environmental					
	Cooperation					
	Center (NPEC)					
MODIS Near	Japan	32-34.75N	1km (Image	MODIS	Aqua an	nd
Real Time	Aerospace	128.5-131W	and Binary		Terra	
Database	Exploration		data)/ 500m			
	Agency (JAXA)		(image)			

Most of red tide occurred in the northwest sea area in Kyushu region. They are usually observed near the coast in inner part of bay and their scales are very often very small ($10-100 \text{ m}^2$). It is difficult to pinpoint the location by using upper resolution of satellite. However, satellite images can detect high chlorophyll-a concentration around red tide area when red tide occurred in comparatively wide scale.

Figure 6.2 shows the location of red tide in Fukuoka Bay during 11-31 July 2006 and Figure 6.3 shows the satellite chlorophyll image on 26 July 2006. In the right image, high chlorophyll concentration patch is detected in Fukuoka Bay where red tide was observed by fisheries agency. Additionally, distribution of high chlorophyll water mass from Fukuoka Bay is shown in these satellite images.

Satellite images are useful tool to understand the distribution of high chlorophyll concentration and that's movement.

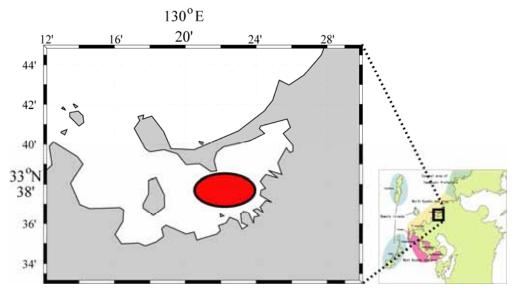


Figure 6.2 Location of red tide which occurred in Fukuoka Bay during 11-31 July 2006. Red circle indicates area where water discoloration was observed by fisheries agencies.

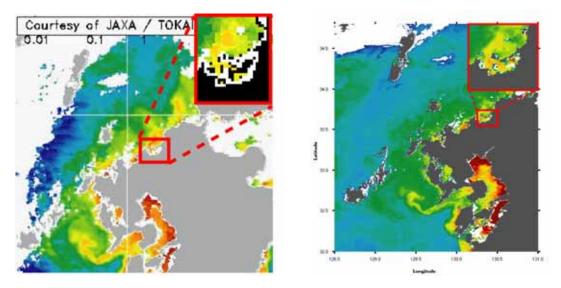


Figure 6.3 Satellite chlorophyll images (MODIS/Terra) on 26 July 2006. Left image is provided by Marine Environmental Watch (Resolution: 1km). Right image is provided by MODIS Near Real Time Database (Resolution: 500m). Picture in red square indicates enlarged image of Fukuoka Bay.

7 Conclusion

7.1 Status of recent HAB events in the target sea area

During the recent years, there have been no major variations in the number of red-tide events in the target sea area, with around 50 red-tide events occurring each year. Fishery damages by red-tide events have also occurred every year.

Since monitoring started in 1979, around four (20 events/5 year) *Karenia mikimotoi* blooms have been recorded every year, and is still one of the major species that cause fishery damage. Apart from *Karenia mikimotoi*, blooms of *Cochlodinium polykrikoides*, *Heterocapsa circularisquama*, *Chattonella antique*, *Chattonella marina* and *Heterosigma akashiwo* have also been occurring continuously. Within these species, *Cochlodinium polykrikoides* is considered as a high priority species in the NOWPAP region; and websites and pamphlets have been developed specifically for this species. *Cochlodinium polykrikoides* does not only bloom and remain in the coastal area but is reported to transport to other regions with the ocean currents (NOWPAP CEARAC, 2005). It is therefore necessary to continue the observations on *Cochlodinium polykrikoides*.

During 1978-1999, shipment of shellfish has been stopped 10 times due to contamination by toxin-producing planktons; shipment was stopped once in 2006. Although shipment stoppage in the target sea area is less frequent than it is in the Hokkaido and Tohoku regions, toxin-producing planktons are still recorded every year in the target sea area. Prior to the 1980's, shellfish contamination was not a common event in the target sea area; however, despite yearly variations, shipment stoppage has become more frequent since the 1980's. Therefore it is necessary to continue with the information collection activities on shellfish contamination and the causative toxin-producing planktons.

Monitoring organizations of each prefecture monitor planktons that cause significant fishery damage such as *Karenia mikimotoi*, *Cochlodinium polykrikoides*, *Heterosigma akashiwo*, *Chattonella antique*, *Chattonella marina* and *Heterocapsa circularisquamai*, and notify the local fishermen when the cell concentration of these species exceeds the set warning/action standards. PSP- and DSP-inducing speceis (*Dinophysis* spp., *Alexandrium* spp., and *Gymnodinium catenatum*) are also monitored regularly. These species should also be considered as high priority species as in the case with *Cochlodinium polykrikoides*, and information should be collected and shared among the NOWPAP members.

7.2 Environmental conditions during HAB events

During post red-tide survey, SST, salinity and DO are measured to understand the environmental conditions during red-tide events. Regular red-tide monitoring is also conducted in addition to the post red-tide monitoring. During regular red-tide monitoring, red-tide related environmental parameters such as nutrients and chlorophyll-a are also measured in addition to SST, salinity and DO. However, the reports of the monitoring organizations have not made any detailed analysis on the relationship between red-tide events and the measured environmental conditions.

Data on HABs in the target sea area will be collected continuously through the HAB case study and are planned to be presented in an integrated manner. The collected and integrated data

should hopefully then be useful for the understanding of HAB mechanisms in the target sea area. For future activities, it is necessary to collect and share information (e.g. scientific literatures) that investigates the relationship between HAB events and environmental conditions.

7.3 Red tide monitoring with satellite remote sensing images

Satellite images can provide extensive sea surface information. In recent years, resolution of satellite images has become higher. For example JAXA has provided MODIS 500m resolution images since April 2006. However, most of red tide events in Japan are 10- 100m scale, and it is difficult to identify small red tide events only with satellite Images yet. On the other hand, in case of red tide in large scale, satellite remote sensing is one of the useful tools. Ishizaka et al. (2006) reported the availability of satellite chlorophyll image for detection of large red tide in Ariake Bay. They mentioned that the algorithms require improvement to accurately estimate chlorophyll in highly turbid water and in red tide areas.

Since 2006, some high resolution satellite images in this region have been available. NASA (MODIS Rapid Response System: http://rapidfire.sci.gsfc.nasa.gov/subsets/) has provided daily true color satellite images with 250m resolution since 7 September 2006. These images cover East China Sea and are available for free of charge.

JAXA provides the satellite images of ALOS which have a spatial resolution of 10 m, starting 24 January 2006 (http://www.eorc.jaxa.jp/about/distribution/index.html). Resolution of 10 m enables detection of small red tides. Some red tide events observed by ALOS are introduced in the website of EORC, JAXA. For example, red tide of *Prorocentrum minimum* in Tokyo Bay on 1 June 2006 and red tide of *Noctiluca scintillans* in Kagoshima Bay on 7 April 2006, red tide of *Gephyrocapsa oceanica* in Hakata Bay on 20 April 2007 etc. were shown with vivid clarity by ALOS image (http://www.eorc.jaxa.jp/ALOS/img_up/ex_akashio2006/jakashio_01.htm, http://www.eorc.jaxa.jp/ALOS/img_up/jav2_070515.htm).

High resolution satellite images are very useful for monitoring red tide. In near future, ALOS will be a very effective tool for red tide detection.

7.4 Information sharing among the NOWPAP members

The target sea area is located close to the HAB hot spots of East China Sea and southern coast of Korea. Recent HAB events in the target sea area are known to be partly triggered by the transboundary transport of HAB species from the above mentioned HAB hot spots. Therefore, in order to advance measures against HABs in the target sea area, it is necessary to understand the status of HAB events in the other sea areas of the NOWPAP region. Finally, it is hoped that information sharing of HAB events will be promoted through the HAB case studies, and consequently lead to the reduction of HAB events in not only the target sea area, but the whole NOWPAP region as well.

8 References

Fisheries Agency (1979-2006): Information on the occurrence of red-tide in the sea area of Kyushu region. Kyushu Fisheries Coordination Office, Annual Report 1980-2007 (in Japanese).

Fukuoka Fisheries and Marine Technology Research Center (2007-2008): Report on the monitoring project of shellfish toxin composition and harmful planktons.

Japan Fisheries Resource Cnservation Association (2001): Report on countermeasures against bivalve shellfish poisoning F.Y. 2000.

Kyushu Fisheries Resource Conservation Association (1980- 2007):

Miyahara et al. (2005): A harmful bloom of Cochlodinium polykrikoides Margalef (Dinophyceae) in the coastal area of San-in, west part of the Japan Sea, in September 2003, Bull. Plankton Soc. Japan, 52 (1), 11-18

Nagasaki Prefectural Institute of Fisheries (2007-2008): Report on the monitoring project of red-tide planktons F.Y. 2006-2007.

Saga Prefectural Genkai Fisheries Promotion Center (2007-2008): Report on the improvement project for environmental monitoring of fishing ground (Monitoring survey of red-tide occurrences) F.Y. 2006-2007.

Yamaguchi Prefectural Fisheries Research Center (2007-2008): Report on the monitoring project of red tide and shellfish poisoning F.Y. 2006-2007.

Annex1 Proposed format for recording of HAB events

	Event No.		Dur	ration(Sta	art)	Dur	ration(E	End)		Locatio of	occurrence			F	ishery damag	hery damage		Environmental pa			
Pref. Code	Year	No.	Year	Month	day	Year	Month	day	Continuo us days	Region	Spot	Causative species	Maximum density (cells-inds/mL)	Fish/Shellfis h species	Quantity	Economic loss (1,000 yen)	Temp.	Salinity	DO (mg/L)	Size of bloom (km²)	備考
YM	2007	1	2007	2	6	2007	2	9	4	Coastal area of Yamaguchi	Coastline of Shimonoseki City(Between Toyoura town and Yoshimi)	Noctiluca scintillans	2,110				1	-	-	0.8	
YM	2007	2	2007	2	9	2007	2	19	11	Coastal area of Yamaguchi	Sensaki Bay	Noctiluca scintillans	2,990				-	-	-	?	
YM	2007	3	2007	3	23	2007	3	30	8	Coastal area of Yamaguchi	Coastline of Shimonoseki City(Between Toyokita town and Yoshibo)	Noctiluca sp.	不明				-	-	-	?	
YM	2007	4	2007	3	26	2007	3	30	5	Coastal area of Yamaguchi	Between Aburaya Bay and Sensaki Bay, Coastline of Hagi City	Noctiluca sp.	不明				1	-	-	?	
YM	2007	5	2007	4	9	2007	4	12	4	Coastal area of Yamaguchi	Coastline of Shimonoseki City(Between Ogushi and Yudama of Toyoura town)	Noctiluca sp.	不明				1	,	,	?	
YM	2007	6	2007	4	19	2007	4	24	6	Coastal area of Yamaguchi	Hagi City (Between Ohiminato and	Noctiluca sp.	不明				-	-	-	?	
YM	2007	7	2007	5	23	2007	5	30	8	Coastal area of Yamaguchi	Coastline of Hagi City (Sanmiogasaki)	Noctiluca sp.	不明				-	-	-	?	
YM	2007	8	2007	11	29	2007	12	6	8	Coastal area of Yamaguchi	Shimonoseki fishing port	Mesodinium rubrum	19		1		-	-	-	0.0001	7
YM	2007	9	2007	12	7	2007	12	19	13	Coastal area of Yamaguchi	Ohura fishing port of Nagato City	Mesodinium rubrum	4,280				16-17	-	-	0.04	
YM	2007	10	2007	12	12	2007	12	14	3	Coastal area of Yamaguchi	Coastline of Hagi City (Susa Town)	Mesodinium rubrum	170				,	-	-	0.02	
FO	2007	1	2007	3	8	2007	5	9	63	North Kyushu	Fukuoka Bay	Gephyrocapsa oceanica	不明	Damaged(Th e details were not known.)			?	?	?	?	
F0 F0	2007	3	2007	6	7 22	2007	6	12 27	6	North Kyushu North Kyushu	Fukuoka Bay Fukuoka Bay	Heterosigma akashiwo Skeletonema costatum	不明不明				?	?	?	?	
	2007	4	2007	7	6	2007	7	9		North Kyushu		Heterosigma akashiwo	不明				?	?	?	?	
FO	2007	5	2007	7	9	2007	7	16	8		Fukuoka Bay	Skeletonema costatum Prorocentrum triestinum Heterosigma akashiwo	不明				?	?	?	?	
FO	2007	6	2007	8	6	2007	8	16	11	North Kyushu	Fukuoka Bay	Chaetoceros sp. Prorocentrum triestinum	不明				?	?	?	?	
FO	2007	7	2007	8	23	2007	8	28	6	North Kyushu	Fukuoka Bay	Chaetoceros sp. Karenia mikimotoi	不明				?	?	?	?	
FO	2007	8	2007	9	12	2007	9	18	7	North Kyushu	Fukuoka Bay	Leptocylindrus sp. Chaetoceros sp. Skeletonema sp.	不明				?	?	?	?	
FO	2007	9	2007	9	20	2007	9	25	6	North Kyushu		Skeletonema sp. Thalassiosira sp. Chaetoceros sp.	不明				?	?	?	?	
SA	2007	10 19	2007	8	1	2007	12	24			Hado Point Karatsu Bay	Noctiluca scintillans	3,800				15.0	34.1	7.4		
NS	2007	19	2007	12	16	2007	12	18	3	North Kyushu Remote Is.	Tsushima	Akashiwo sanguinea Scrippsiella sp.	5,960		-		14.6	34.1	6.4		
NS	2007	2	2007	3	23	2007	4	2	11	Remote Is.	Goto	Noctiluca scintillans	350				16.7	35.8	7.7	0.0005	
	2007	5	2007	5	25	2007	5	29	5	Remote Is.	Tsushima	Heterosigma akashiwo	13,850				19.7	33.5	5.6 5.0		
NS NS	2007	6	2007	6	14	2007	7	- б - Б	22	Remote Is. West Kyushu	Tsushima Kujuku island	Noctiluca scintillans Karenia mikimotoi	1,880 16.500	ブリ	約3000 ind.	不明	21.9	33.5 33.6	11.6		19 Jun. St.
	2007	7	2007	6	14		6	16				Ceratium furca	234			1 - 12	- 1.0				
NS	2007	8	2007	6	19	2007	7	9	21	West Kyushu	Kujuku island	Karenia mikimotoi	97,000	トラフグ ブリ ヒラマサ	約5000 ind. 20 ind. 50 ind.	500 100 200	,				
NS	2007	9	2007	6	24 24	2007	7	7	14	Remote Is.	Goto	Ceratium furca	730				24.9	31.5	7.6	0.0225	
	2007	10 11	2007	6	24	2007	6	29 27		Remote Is.	Goto	Ceratium furca Ceratium furca	88 41		l		22.4	34.1 33.4	7.2 7.5	0.005	
NS	2007	12	2007	6	27	2007	6	29	3	Remote Is.	Goto	Prorocentrum triestinum	2,232,000				25.2	33.4		0.01	
NS	2007	13	2007	7	2	2007	7	5	4	West Kyushu		Karenia mikimotoi	5,100				•	_	_	•	
NS NS	2007	15	2007	7	11	2007	7	23	13	Remote Is. North Kyushu	Tsushima Hirado(Usuka/F urue Bay)	Ceratium furca Karenia mikimotoi Cochlodinium polykrikoides	8560 682	ブリ ヒラマサ	31 ind. 20 ind.	合計500	22.3		6.6		
NS	2007	17	2007	7	27	2007	7	29	3	North Kyushu	Hirado(Usuka/F urue Bay)	Noctiluca scintillans	2,445	マダイ	1 ind.						
NS	2007	20	2007	- 8	22	2007	- 8	27	6	West Kyushu	Ohmura Bay	Skeletonema sp.	4,750				29.2				
NS NS	2007	21	2007	8	23	2007	8	24	2	North Kyushu	Imari Bay	Mesodinium rubrum Prorocentrum triestinum	1,250					-	-		
NO	2007	22	2007	8	24	2007	8	25		vvest ryusilu	Coastille of Selfi	r rorocentrum triestindm	1,300								