Report of HAB Case Studies in the Coastal Area of Qingdao Region

Yongquan YUAN and Zhiming YU*

Institute of Oceanology, Chinese Academy of Sciences

7 Nanhai Road, Qingdao, China 266071

December 2008

^{*} Corresponding author: zyu@qdio.ac.cn

Contents

1. INTI	RODUCTION2
1.1.	OBJECTIVE2
1.2.	DEFINITIONS AND RULES USED IN THE HAB CASE STUDY2
1.3.	OVERVIEW OF THE TARGET SEA AREA
1.3.	······
1.3.	2. Environmental/geographical characteristics3
2. ME	THODOLOGY USED IN THE CASE STUDY IN THE QINGDAO COASTAL
WA	\TERS4
2.1.	METHODOLOGY USED IN THE CASE STUDY4
2.2.	WARNING STANDARDS AGAINST HAB EVENTS
2.3.	TARGET HAB SPECIES5
3. MO	NITORING FRAMEWORK AND PARAMETERS OF HAB6
3.1.	MONITORING FRAMEWORK ·······6
3.2.	MONITORING PARAMETERS6
3.3.	DATA AND INFORMATION USED7
4. ST/	ATUS OF HAB EVENTS
4.1.	STATUS OF HAB EVENTSIN THE PAST DECADES OR SO8
4.2.	YEARLY TRENDS OF HAB EVENTS 12
4.3.	YEARLY TRENDS OF HAB SEASON
4.4.	YEARLY TRENDS OF CAUSATIVE SPECIES 14
5. ST/	ATUS OF RECENT HAB EVENTS AND RESULTS OF ENVIRONMENTAL
MO	NITORING 16
5.1.	NUMBER OF HAB EVENTS ······· 16
5.2.	PERIOD OF HAB EVENTS16
5.3.	DURATION OF HAB EVENTS
5.4.	LOCATION OF HAB EVENTS 17
5.5.	CAUSATIVE SPECIES 19
5.6.	MAXIMUM DENSITY OF EACH HAB EVENT
5.7.	STATUS OF HAB INDUCED FISHERY DAMAGE20
5.8.	STATUS OF TARGET SPECIES20
5.9.	ENVIRONMENTAL MONITORING RESULTS DURING HAB EVENTS
5.10.	
5.11.	METEOROLOGICAL OBSERVATION PARAMETERS22
6. CO	NCLUSION
7. RE	FERENCE

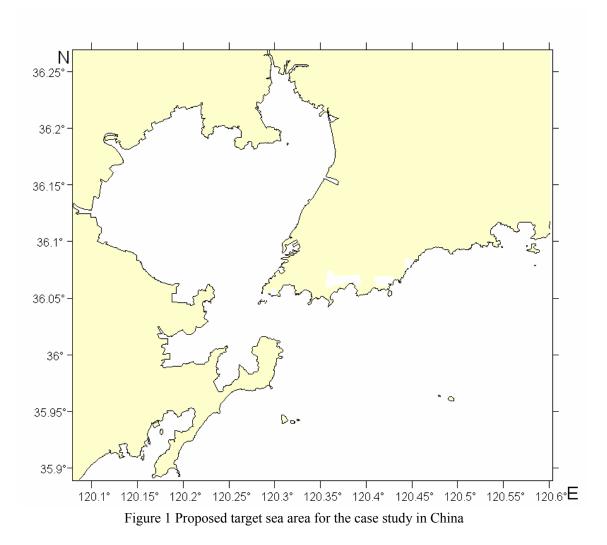
1. Introduction

1.1. Objective

The objective of conducting the HAB case study in the coastal area of Qingdao region is to establish the most effective and least laborious ways for sharing among the NOWPAP member states, information on HAB events and associated oceanographic and meteorological conditions. Furthermore, common HAB issues within the NOWPAP region will be identified through the case study. In the case study, both red-tide and toxin-producing planktons will be referred as HAB species.

1.2. Definitions and rules used in the HAB case study

Harmful algal blooms (HABs) were called red tides in the past years because of the intense (often reddish) discoloration of the seawater by the pigments in the algae involved. However, the term red tide is too general: it includes dense accumulation of phytoplankton species which can visibly discolor seawater but have no harmful effects, and it excludes many other blooms which cause negative effects at very low density without any associated water discoloration. In spite of the name, red tides are often not red, and are seldom associated with tides, and in some cases exert no negative effects.


"Harmful algal blooms" (or HABs) is the term now used widely to describe blooms which have negative effects. They take many forms and have equally diverse effects, but they are always toxic or harmful. These effects involve different toxins produced by the algae, killing fish and other marine animals, as well as having more general environmental effects.

Traditionally, Chinese are used to the term "red tides" to describe any marine phytoplankton blooms that either causes water discolorations or results in harmful and toxic events. For the scientific communities in China, HABs is widely used. HABs in this report, therefore, encompass both harmful or toxic blooms and harmless red tides.

1.3. Overview of the target sea area

1.3.1. Location and boundary

The target sea area covers the eastern part of Qingdao coastal area and a semi-enclosed interior gulf of Qingdao named Jiaozhou Bay, which jointed with the North Yellow Sea. The location of the target area is from 35°35'~37°09'N and 119°30'~121°00'E (Fig.1).

1.3.2. Environmental/geographical characteristics

The target sea area is surrounded by the continent in the northwest and faces North Yellow Sea in the southeast, which includes the waters of Jiaozhou Bay (390km²) and east coastal waters of Qingdao (140km²). With an average water depth of 7m and a maximum depth of 64m, most part of Jiaozhou Bay is shallower than 5m. Located in the northern temperate zone, the target sea area is neither extremely hot in summer nor severely cold in winter. The multi-year mean air temperature is 13°C, the sediment depth is about 662 mm and the seawater salinity is between 30.54~33.29.

Major rivers discharging directly into the target sea area include the Haipo, Moshui, Licun, Dagu, 26 rivers in total. The Haipo, Moshui, Licun, Dagu Rivers around the Jiaozhou Bay have important effects on both salinity and hydrography of the target sea area. All rivers have peak runoff in summer and minimum discharge in winter.

Qingdao is a littoral city with a population of approximately 8,300,000 and a population density of about 1517people/km².

2. Methodology used in the case study in the Qingdao Coastal Waters

2.1. Methodology used in the case study

Red tide monitoring program in China is conducted by State Oceanic Administration (SOA). The monitoring program started from late 1980s, and the monitoring network is still under construction. SOA has issued "Annual Report of Chinese Marine Environmental Quality" since 1990, in which the data on HABs case is reported. The HAB event in this report is based on two ways, one is the seawater color change found by fisherman or air remote sensing, which is then identified. The other is based on the regular monitoring by SOA. That is one of the data sources in our HAB case study of Qingdao Coastal Waters.

In order to ensure the coastal water quality of Qingdao for the Sailing Regatta of 2008 Olympic game, a HAB monitoring and routine sea quality monitoring programs are conducted by North China Sea Environment Monitoring Centre (NCSEMC) which authorized by SOA in recent years. NCSEMC has issued "Monitoring and warning report of HAB events in costal waters of Qingdao" daily during the July and August since 2005. That is another data source reported in the case study.

Besides, many research programs on HABs are conducted in Jiaozhou Bay because it is a typical bay in North China sea. Related data on HABs event is also used in the report.

2.2. Warning standards against HAB events

In order to prevent damage from HABs, monitoring organizations in the target sea area have established HAB warning standards for major causative species in Qingdao coastal waters by using related international standards as a reference (Table 1). In general, the standard of warning and action is the same in all cases — If exceeded, it will be reported to local government followed by actualization of certain countermeasurements, such as spraying modified clay, moving fish cage, etc..

Name	Standards(cells/L)	Toxin
Mesodinium rubrum	$5x10^{5}$	No
Noctiluca scintillans	$5x10^{4}$	No
Skeletonema costatum	$5x10^{6}$	No
Heterosigma akashiwo	$5x10^{7}$	No
Eucamipa zoodianus	10 ⁵	No
Alexandrium tamarense	10 ⁶	Yes(PSP)

Table 1 HAB warning standards of Oingdao City

In China, harvested shellfish are monitored to check the presence of any algal toxins. Safety limits are established by the Government, which are $80\mu g$ STXeq/100g of meat for PSP and less than detection limit by means of mouse bioassay (0.05 MU/g) for DSP.

2.3. Target HAB species

The causative HAB species in Qingdao coastal waters are basically non-toxin plankton and zooplankton, therefore, in this case study, the following 5 species of HAB are referred as 'target HAB species'.

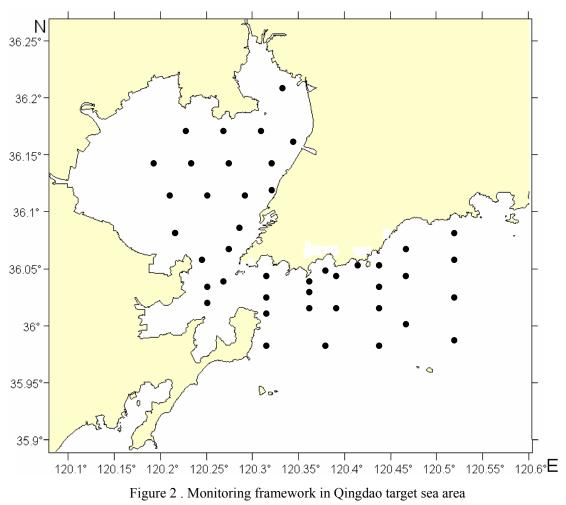

Name	Red tide causative species	Toxin-producting plankton
Mesodinium rubrum	Yes	
Noctiluca scintillans	Yes	
Skeletonema costatum	Yes	
Heterosigma akashiwo	Yes	
Eucamipa zoodianus	Yes	

Table 2 Target HAB species in this case study

3. Monitoring framework and parameters of HAB

3.1. Monitoring framework

As mentioned above, North China Sea Environmental Monitoring Centre (NCSEMC) conducts HAB monitoring in recent years to prevent HABs in Qingdao coastal waters. There're 43 monitoring stations set up in the target sea area, distributed among Jaozhou Bay, Huiquan Bay, Tuandao Bay, Taipingjiao Bay, Fushan Bay, Maidao Bay, Shazikou Bay and adjacent coastal waters. The boundaries and locations of the monitoring stations are presented on Figure 2.

3.2. Monitoring parameters

In the coastal waters of Qingdao, the following two types of HAB related surveys are conducted: post-HAB survey and regular HAB monitoring survey. Post-HAB survey is conducted when discoloration of water bas been observed and HAB event has occurred. Regular HAB monitoring survey is conducted regularly at fixed locations, irrespective of any HAB events.

This case study will focus mainly on the results of the post-HAB survey, which monitors HAB causative species, cell density, affected area, water temperature, salinity and DO. Meanwhile, the regular HAB monitoring results such as nutrients, wind speed/direction, weather condition and other water quality as well as meteorological parameters will be used for further discussions.

3.3. Data and information used

Information on HAB events will be mainly collected from the following sources: Reports published by organizations that conduct HAB monitoring in the target sea area Monitoring and warning report of HAB events in costal waters of Qingdao (2005-2007) Annual Report of China Marine Environment (2003-2007) Annual Report of Marine Environment of Shandong Province (2006) Annual Report of Offshore Water Environment of China.(2001-2007) Annual Report of Marine Environment of Qingdao.(2004-2005) Published references and data Results from related research projects Personal communication

Table 3 shows the monitoring parameters that will be referred in the HAB case study

	Monitoring parameter	Survey type			
НАВ	 HAB species (dominant/causative spp.) Cell density Bloom area 	Post-HAB survey			
Water quality	- Water temp. - Salinity - DO	Post-HAB Survey			
Others	 Water quality Transparency, Nutrients Meteorology Weather, Wind, direction/speed 	Regular HAB monitoring survey			

Table 3 Monitoring parameters referred in the	he HAB case study
---	-------------------

4. Status of HAB events

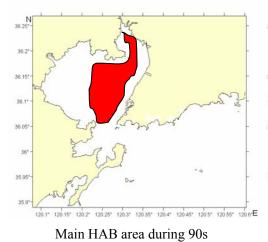
The target sea area, Jiaozhou Bay and eastern part of Qingdao coastal waters, is one of HABs occurrence areas in North Yellow Sea. Therefore this chapter will emphasize the records in the past ten or more years of HAB status in Qingdao coastal waters as the epitome of North Yellow Sea.

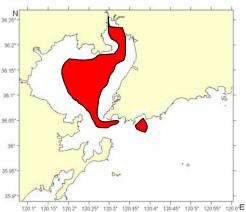
4.1. Status of HAB events in the past decades or so

As summerized in table 4, 38 HAB events have been recorded by SOA in North Yellow Sea since 1990, in which, 24 HAB events occurred in Qingdao coastal waters. Therefore, Qingdao coastal waters is the typical "target sea area" to study the HAB events occurred in North Yellow Sea.

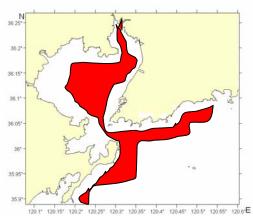
Event	Location	Approximate	Duration	Causative species	Max Cell	Damage	
No.		Area	(DD/MM/YY)		Density(Cells/L)	Fishery damage	Human
		suffered(Km2)				(Chinese Yuan)	Health
1	Jiaozhou Bay, Qingdao	2	26/06/1990	Mesodinium Rubrum	/	/	
2	Changhai country,	/	1990	/		2.5 million due	
	Liaoning					to death scallops	
3	Jiaozhou Bay, Qingdao	/	04/1992	/	/	/	
4	East Qingdao	/	12/05/1992	/	/	/	
5	Jiaozhou Bay, Qingdao	/	08/1992	/	/	/	
6	Dalian Bay, Dalian	40	11/08/1993	/	/	/	
7	Jiaozhou Bay, Qingdao	/	08/1997	Skeletonema Costatum	/	/	
8	Jiaozhou Bay, Qingdao	10	03/07/1998-08/07/1998	Skeletonema Costatum	4.5x10 ⁶	/	
9	Jiaozhou Bay, Qingdao		08/06/1999-15/06/1999	Eucampia Zodiacus	2.3x10 ⁶	/	
10	Jiaozhou Bay, Qingdao	26	23/07/1999-24/07/1999	Skeletonema	/	/	
				Costatum, Eucampia			
				Zodiacus			
11	Fushan Bay, Qingdao	60	26/07/1999	Mesodinium Rubrum	/	/	
12	Dalian Bay, Dalian		07/1999	Exuviaella Marina	8.1x10 ⁶	/	DSP
							detected
13	Dalian Bay, Dalian	100	17/07/1999-21/07/1999	Noctiluca Scintinllans	/	/	
14	Penglai, Shandong	680	17/07/1999	Noctiluca Scintinllans	/	/	
15	Shidao, Shandong	160	06/08/1999	/	/	/	
16	Zhuanghe, Liaoning	827	02/08/2000	/	/	15 million	
17	Jiaozhou Bay, Qingdao	92	20/07/2000-23/07/2000	Noctiluca Scintinllans	/	/	

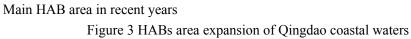
Table 4 Situation of HAB events in the North Yellow Sea, China


18	Dandong, Liaoning		24/05/2001	/	/	/	
19	Fushan Bay, Qingdao		04/04/2001	Noctiluca Scintinllands	/	/	
20	Jiaozhou Bay, Qingdao	5	11/06/2001-12/06/2001	Noctiluca Scintillands	/	/	
21	Jiaozhou Bay, Qingdao	9.8	07/07/2001-13/07/2001	Mesodinium Rubrum	/	/	
22	The coast of Jiangsu	1000	20/06/2001	Skeletonema Costatum	/	/	
23	Yalujiang Estuary,	110	24/08/2001-14/09/2001	Eucampia Zoodiacus,	/	/	
	North Yellow Sea			Chaetocerus Socialis			
24	Fushan Bay, Qingdao	60	28/06/2002-02/07/2002	Mesodinium Rubrum	/	/	
25	Dandong Waters,	30	06/2003	/	/	/	
	Liaoning						
26	Jiaozhou Bay,Qingdao	200	07/2003	Coscinodiscus Asteromphalus	/	/	
27	East Qingdao	450	04/07/2003-10/07/2003	Mesodinium Rubrum	/	/	
28	Jiaozhou Bay, Qingdao		02/2004	Guinaradia Delicatula	/	/	
29	Jiaozhou Bay, Qingdao	70	09/02/2004-28/02/2004	Rhizosolenia Delicatula	/	/	
30	Jiaozhou Bay, Qingdao	70	22/03/2004-25/03/2004	Thalassiosira NordenskÖldii	/	/	
31	Jiaozhou Bay, Qingdao		07/2004	Coscinodiscus Asteromphalus	/	/	
32	Fushan Bay, Qingdao	50	10/08/2004	Mesodinium Rubrum	/	/	
33	Jinshatan, Dalian		06/09/2004	Chattonella Antiqua	/	/	
34	Jinshatan, Dalian		25/09/2004	Alexandrium Catenella	/	/	
35	Lingshan Bay, Qingdao	80	12/06/2005-17/06/2005	Heterosigma Akashiwo	9.54x10 ⁷	/	
36	Shazikou Bay, Qingdao	70	07/06/2007-10/07/2007	Heterosigma Akashiwo	5.31x10 ⁷	/	
37	East Qingdao	15	20/08/2007-23/08/2007	Skeletonema Costatum	1.11x10 ⁷	/	
38	Shazikou Bay, Qingdao	8	25/09/2007-28/09/2007	Gonyaulax Spinifera	/	/	


From year 1997-2007, a total of 20 HAB events were recorded in the Qingdao coastal waters. The most frequently observed HAB species were *Skeletonema costatum* and *Mesodinium rubrum*, which constituted almost half of all recorded events.

			Squares	
HAB event				
08/1997	Centre of Jiaozhou Bay	Skeletonema costatum	small	
03/07/1998-08/07/1998	North-east part of Jiaozhou Bay	Skeletonema costatum	10km ²	
06/1999	North-east part of Jiaozhou Bay	Eucampia zodiacus	Small	
23/07/1999-24/07/1999	Jiaozhou Bay	Skeletonema costatum, Eucampia zodiacus	26km ²	
26/07/1999	Fushan Bay	Mesodinium rubrum	60km ²	
20/07/2000	Centre of Jiaozhou Bay	Noctiluca Scintinllans	92km ²	
04/04/2001	Fushan Bay	Noctiluca Scintinllands	small	
11/06/2001-12/06/2001	Jiaozhou Bay	Noctiluca Scintillands	5 km ²	
07/07/2001-13/07/2001	Mouth of Jiaozhou Bay Mesodinium rubrum		9.8km ²	
28/06/2002-02/07/2002	Fushan Bay	Bay Mesodinium rubrum		
04/07/2003-10/07/2003	Z003Tuandao Bay、 Huiquan Bay、 Taipingjiao Bay、 Fushan BayMesodinium rubrum		450km ²	
02/2004	North-east part of Jiaozhou Bay	Guinaradia delicatula	Small	
09/02/2004-28/02/2004	East part of Jiaozhou Bay	Rhizosolenia delicatula	70km ²	
22/03/2004-25/03/2004	22/03/2004-25/03/2004 North-east part of Jiaozhou Bay Thalas norden.		70km ²	
07/2004	2004 North part of Jiaozhou Bay Coscinodiscus asteromphalus		Small	
10/08/2004	Fushan Bay	Mesodinium rubrum	50km ²	
12/06/2005-17/06/2005	Lingshan Bay	Heterosigma Akashiwo	80km ²	
07/06/2007-10/07/2007	Shazikou Bay	Heterosigma Akashiwo	70km ²	
20/08/2007-23/08/2007	Eastern costal waters	Skeletonema costatum	15 km^2	
25/09/2007-28/09/2007	Shazikou Bay	Gonyaulax spinifera	8 km ²	
	1	l		


Table 5 Yearly Trends of HAB enents


According to table 5, the HAB area expanded obviously in recent years. Jiaozhou bay was the major HABs area of Qingdao coastal waters during the whole 90s, however, Fushan bay became to be another main HAB area from the early years of 21st century. Moreover, the HAB area expanded much seriously in recent 4-5years, which was from the western part (Lingshan Bay) to the eastern part (Shazikou Bay) of Qingdao coastal waters as shown in figure 3.

Main HAB area during early 21st centery

4.2. Yearly trends of HAB events

During the 10 years between 1997 and 2007, a total of 20 HAB events were recorded. The frequency of HAB events has increased significantly in recent years than before.

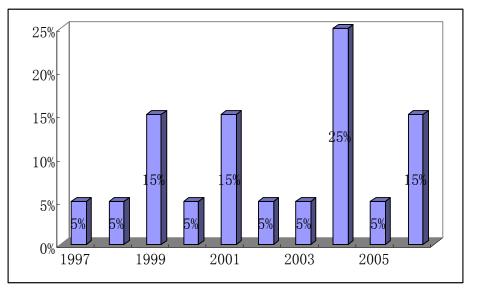


Figure 4 Yearly trend of HAB events in the target area

According to figure 4, almost half of HAB events recorded occurred in the 4 years, especially in 2004, in which 5 HAB events have occurred—accounted for about 25% of total.

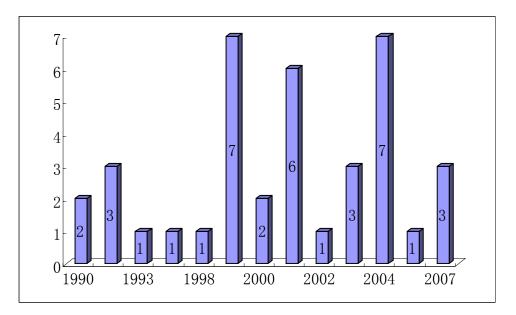


Figure 5 Yearly trend of HAB events in the North Yellow Sea

For the North Yellow Sea region, the same conclusion could be obtained that the frequency of HAB events has increased significantly in recent years than before. Figure 5 shows the yearly trend of HAB events in North Yellow Sea from 1990 to 2007. There're 38 events recorded and among them 11 among them occurred in recent 4 years. The trend of HABs occurrence seemed smooth and annual average was just 2 from 1990 to 1998. The HABs events dramatically increased from 1999 and then appeared a peak value of HABs occurrence in every 2 or 3 years.

4.3. Yearly trends of HAB season

According to the HAB data from 1997-2007, approximately 80% of HAB events occurred during June-September (Figure 6). June, July and August are considered to be the most frequent months of HAB occurrence. Of these 4 months, June and July are considered to be the dominant durations of HAB events, with over half of the total HAB events occurring in the 2 months.

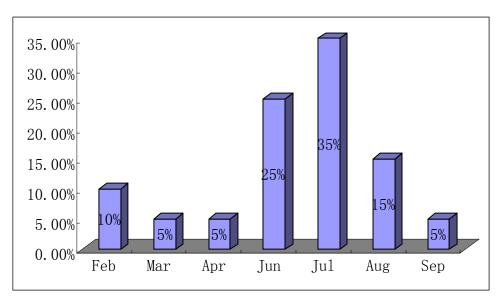


Figure 6 Seasonal trend of HAB events in the target area

The record of North Yellow Sea indicates the same situation. Only less than 20% HAB events occurred during the year except for June to September, with not even a single HAB event recorded during the months of October to December and January. July is also believed to be the dominant durations of HAB events in the whole year, followed by June.



Figure 7 Seasonal trend of HAB events in the yellow sea

4.4. Yearly trends of causative species

Table 6 shows the HAB species that were recorded in the Qingdao coastal area during 1997-2007 and their frequency of occurrences. A total of 10 HAB species were recorded and the most frequent species were *Skeletonema costatum* and *Mesodinium rubrum*. In general, most species belonged to diatoms.

а :	1007		1	-	1		1	2004	2005	2007	1
Specie name	1997	1998	1999	2000	2001	2002	2003	2004	2005	2007	total
Diatom	1	1	3					4			10
Skeletonema costatum	1	1	1							1	4
Eucampia zodiacus			2								2
Guinaradia delicatula								1			1
Rhizosolenia delicatula								1			1
Thalassiosira								1			1
nordenskÖldii											
Coscinodiscus								1			1
asteromphalus											
Dinoflagellate				1	2					1	4
Noctiluca Scintinllans				1	2						3
Gonyaulax spinifera										1	1
Zooplankton			1		1	1	1	1			5
Mesodinium rubrum			1		1	1	1	1			5
Others											
Heterosigma Akashiwo									1	1	2

5. Status of recent HAB events and results of environmental monitoring

5.1. Number of HAB events

Records of HAB events in 2005-2007 are chosen to illustrate the status of recent HAB events. A total of 4 HAB events in the target sea area were recorded in the period (table 7).

Tuble / Thild events occurred in recent years								
HAB event	HAB area	Causative species	Maximum					
			Density(cells/L)					
12/06/2005-17/06/2005	Lingshan Bay	Heterosigma Akashiwo	9.54x10 ⁷					
07/06/2007-10/06/2007	Shazikou Bay	Heterosigma Akashiwo	5.31x10 ⁷					
20/08/2007-23/08/2007	Eastern costal waters	Skeletonema costatum	1.11×10^{7}					
25/09/2007-28/09/2007	Shazikou Bay	Gonyaulax spinifera	/					

Table 7 HAB events occurred in recent years

Besides the HAB events, there were 3 records of high biomass, in which the maximum density of causative species closed to the warning levels (table 8). The most frequently observed HAB species were *Heterosigma Akashiwo* and *Skeletonema Costatum* respectively.

Event	Area	Causative	Maximum	Warning				
		species	Density(cells/L)	Standards(cells/L)				
12/06/2005	Fushan Bay	Skeletonema	3.6×10^5	$5x10^{6}$				
		costatum						
05/07/2006-09/07/2006	Fushan Bay	Mesodinium	5.6×10^4	5x10 ⁵				
		rubrum						
23/08/2006-24/08/2006	Fushan Bay	Chaetoceros	2.6×10^5	10 ⁶				
		sociali s						

Table 8 High biomass events closed to the warning levels in recent years

5.2. Period of HAB events

As shown in the figure 8, June is the most possible period of HAB events and high biomass events that approach the warning levels in the target sea area. Summer and early autumn are the most possible seasons.

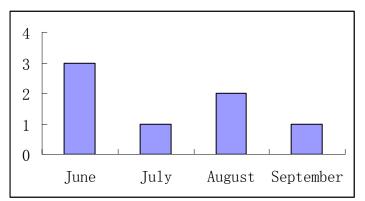
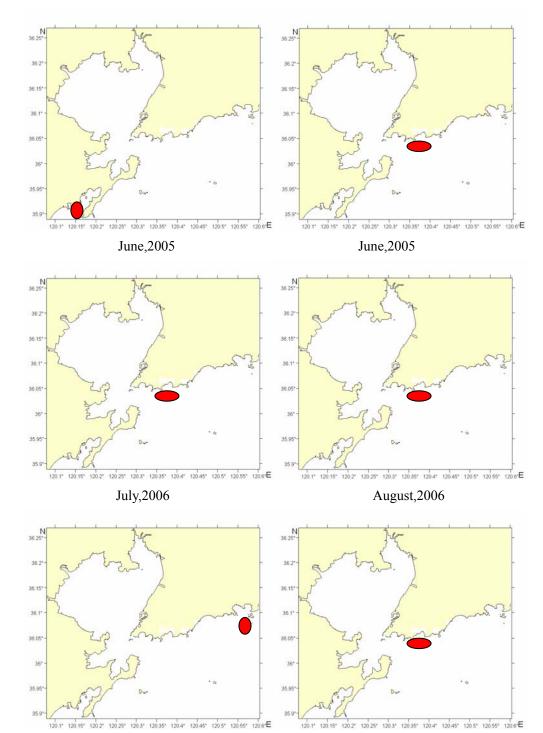


Figure 8 Period of HAB events

5.3. Duration of HAB events

Table 9 shows the number of HAB events and high biomass events by duration (number of days) in 2005-2007. A total of 7 events occurred during the period, in which 1 event lasted for 5 days, 1 event was 4 days, 3 events were 3 days and 2 events were just 1 day. The longest HAB duration was 5 days by *Heterosigma akashiwo*, which occurred in Lingshan Bay with an area of 80 km² during June. Therefore, we could say that the HABs events in the target area are smaller and the duration of each event is shorter.

HAB event	Duration	Causative species			
12/06/2005-17/06/2005	5 days	Heterosigma Akashiwo			
12/06/2005	1 day	Skeletonema Costatum			
05/07/2006-09/07/2006	4 days	Mesodinium rubrum			
23/08/2006-24/08/2006	1 day	Chaetoceros socialis			
07/06/2007-10/06/2007	3 days	Heterosigma Akashiwo			
20/08/2007-23/08/2007	3 days	Skeletonema costatum			
25/09/2007-28/09/2007	3 days	Gonyaulax spinifera			


Table 9 Duration of HAB events in recent years

5.4. Location of HAB events

The location of above HABs and high biomass events in the target sea areas is shown as the table 10 and figure 9. The events often occured in Fushan bay and Shazikou bay during the period. Eutrophication and the weaker water exchange in the two bays are considered to be the major reasons. The two bays are the smaller semi-enclosed gulf and the water exchange is weaker. There is a major living waste-water discharge near Fushan bay, which often results in the eutrophication of nearby waters. Shazikou bay is surrounded by many culture fishery places and fishery ports, and as a result, the water there is believed to suffer from serious eutrophication.

		5
HAB event	HAB area	Causative species
12/06/2005-17/06/2005	Lingshan Bay	Heterosigma Akashiwo
12/06/2005	Fushan Bay	Skeletonema Costatum
05/07/2006-09/07/2006	Fushan Bay	Mesodinium rubrum
23/08/2006-24/08/2006	Fushan Bay	Chaetoceros socialis
07/06/2007-10/06/2007	Shazikou Bay	Heterosigma Akashiwo
20/08/2007-23/08/2007	East costal waters	Skeletonema costatum
25/09/2007-28/09/2007	Shazikou Bay	Gonyaulax spinifera

Table 10 Location of HAB events in recent years

July,2007

August,2007

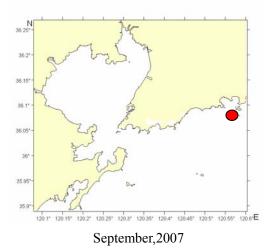


Figure 9 Locations of HAB events in recent years

Comparison with the historical records, Jiaozhou Bay is believed to be another source of HAB events, especially in the northeastern part because of its weak seawater exchange ability and great pollution. However, more attentions were attracted to the eastern part of Qingdao coastal waters from 2005 to 2007 due to where will be 2008 Olympic sailing competition waters. Therefore, more data on the HABs from 2005 to 2007 in the eastern part of Qingdao coastal waters were available. As a result, this chapter will discuss the status of recent HAB events and results of environmental monitoring mostly based on the data on the eastern part of Qingdao coastal waters.

5.5. Causative species

As shown in the table 11, there were 5 causative species in the events and the most frequent species were *Heterosigma Akashiwo* and *Skeletonema Costatum*, 2 times respectively.

Tuble IT Causarive species of Third events in recent years					
HAB event	Causative species	Causative genus			
12/06/2005-17/06/2005	Heterosigma Akashiwo	Raphidophyceae			
12/06/2005	Skeletonema Costatum	Diatom			
05/07/2006-09/07/2006	Mesodinium rubrum	Micro-zooplankton			
23/08/2006-24/08/2006	Chaetoceros socialis	Diatom			
07/06/2007-10/06/2007	Heterosigma Akashiwo	Raphidophyceae			
20/08/2007-23/08/2007	Skeletonema costatum	Diatom			
25/09/2007-28/09/2007	Gonyaulax spinifera	Dinoflagellate			

Table 11 Causative species of HAB events in recent years

According to the monitoring results during 2004~2006 conducted by the NCSEMC, diatoms are the dominant species of the community in the target sea area. 86 species of diatoms were tested out of 108 species in total, and the percentage was 79.63%. The *Skeletonema Costatum* was the most common specie of diatoms. Besides *Skeletonema Costatum*, the *Mesodinium Rubrum* and *Heterosigma Akashiwo* are another important species that occurred during HAB events and have caused HABs to occur more and more frequently in the target area.

5.6. Maximum density of each HAB event

Table 12 shows the maximum density of each HAB event that occurred in the target sea area during 2005-2007. Within these HAB events, the maximum density was recorded in June 2005 at Lingshan Bay, reaching 9.54×10^7 cells/L.

HAB event	Causative species	Maximum density(cells/L)
12/06/2005-17/06/2005	Heterosigma Akashiwo	9.54×10^7
07/06/2007-10/06/2007	Heterosigma Akashiwo	5.31x10 ⁷
20/08/2007-23/08/2007	Skeletonema costatum	1.11x10 ⁷
25/09/2007-28/09/2007	Gonyaulax spinifera	/

Table12 Maximum density of HAB events in recent years

5.7. Status of HAB induced fishery damage

There were not official statistic data on fishery damage caused by HAB events in the target sea area. According to the estimate from the fishermen, the HAB event occurred in the Lingshan Bay 2005 caused great fishery damage. This HAB event was caused by the *Heterosigma Akashiwo* and resulted in serious damage of culture and capture fishery. During this event, the total catch decreased significantly and most yellow croaker captured were dead totally.

5.8. Status of target species

According to the recent 10-year record of HAB events in table 5, the major causative species are *Heterosigma Akashiwo*, *Mesodinium Rubrum* and *Skeletonema Costatum*, with diatoms and zooplankton especially played a significant role. In some cases, although the maximum density did not reach HABs level, the density of *Mesodinium Rubrum* and *Skeletonema Costatum* frequently maintained at a higher level. Therefore, the target species in Qingdao coastal waters should be were diatoms, *Heterosigma Akashiwo* and micro-zooplankton, especially *Mesodinium Rubrum* and *Skeletonema Costatum* (Table 13). A decreasing trend of the size of the causative species is also present, and as such, some small micro-diatoms and micro-zooplankton are taking the place of macro-planktons such as *Noctiluca Scintinllans*.

Specie name	2005	2006	2007	total
Diatom				3
Skeletonema costatum	1		1	2
Chaetoceros socialis		1		2
Dinoflagellate			1	1
Gonyaulax spinifera			1	1
Zooplankton				1
Mesodinium rubrum		1		1
Others				
Heterosigma Akashiwo	1		1	2

Table 13 status of target species of HAB and high biomass event in recent years

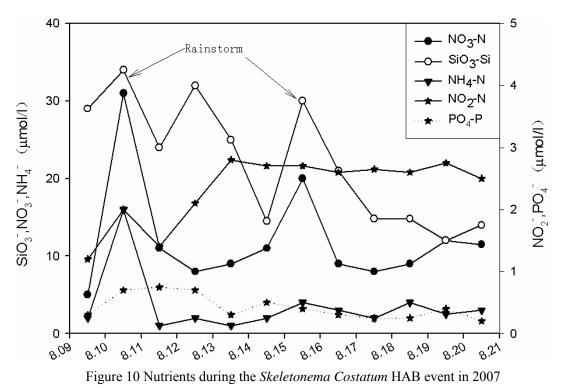
5.9. Environmental monitoring results during HAB events

The environmental parameters were monitored during the HAB event of Skeletonema

Costatum occurred in 2007. The major monitored parameters included temperature, salinity, pH, DO as shown in Table 14. During the HAB event, the water temperature ranged in22.68-25.32°C, salinity ranged in 27.928 - 29.599, pH ranged in 6.97- 8.2 and DO ranged in 6.66 - 7.81.

Spot	Temperature(°C)	Salinity	pН	DO(mg/L)
6	22.7~25.08	29.141~29.599	6.97~8.05	6.66~7.42
8	22.68~25.21	28.528~29.495	7.93~8.09	6.9~7.46
9	23~25.2	29.032~29.461	7.96~8.14	6.99~7.49
14	23.56~25.12	29.012~29.298	7.93~8.2	6.91~7.57
15	23.48~25.17	29.039~29.336	7.94~8.19	7.04~7.68
18	24.08~25.32	28.197~29.171	8~8.16	7.15~7.68
19	23.94~25.1	28.48~29.215	7.99~8.19	7.17~7.81
20	24.22~25.32	27.928~28.31	7.97~8.16	7.22~7.73
21	24.16~25.3	28.439~28.627	7.98~8.15	7.2~7.71

Table 14 Environmental monitoring results during HAB event


Because there was a continuous rainstorm before the HAB event, the salinity was lower than the normal level and the water temperature was also lower than multi-year mean level. *Skeletonema Costatum* is a species that can grow in a wide range of salinity. As a result, the *Skeletonema Costatum* became the dominant specie during this HAB event.

5.10. Water quality parameters of regular HAB monitoring survey

Table 15 shows the regular HAB monitoring survey results during the *Skeletonema Costatum* HAB event occurred in 2007. The major monitored parameters included temperature, salinity, DO and nutrients. Figure 10 shows the change in nutrients during the HAB event.

	Tuble 15 Water quarty parameters during the sketcholenal Costanam The Coeff in 2007								
Spot	Temperature	Salinity	DO(mg/L)	SiO3-Si	PO4-P	NO2-N	NO3-N	NH4-N	
	(°C)			(µg/L)	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µg/L)	
6	22.7~25.08	29.141~29.599	6.66~7.42	338~470	2.25~6.3	31.5~38.9	71~198	17.6~76.4	
8	22.68~25.21	28.528~29.495	6.9~7.46	242~430	1.35~3.6	29.3~41.4	84.6~261	23.2~200	
9	23~25.2	29.032~29.461	6.99~7.49	308~448	0.9~3.6	27.1~32.3	83.6~171	13.5~82.1	
14	23.56~25.12	29.012~29.298	6.91~7.57	290~308	0.9~4.95	26.5~29.2	94~132	24.1~52.9	
15	23.48~25.17	29.039~29.336	7.04~7.68	282~378	1.35~5.4	26.1~31.7	56.4~138	23.8~69.9	
18	24.08~25.32	28.197~29.171	7.15~7.68	253~326	2.25~4.95	30.5~44.3	122~265	32.7~59.6	
19	23.94~25.1	28.48~29.215	7.17~7.81	242~326	2.25~4.5	25.2~35.9	57.4~185	16.7~59.9	
20	24.22~25.32	27.928~28.31	7.22~7.73	271~326	1.8~5.4	31.5~38.5	174~222	33.6~52.6	
21	24.16~25.3	28.439~28.627	7.2~7.71	245~319	2.25~4.05	33.4~45.3	110~277	6.4~52.9	

Table 15 Water quality parameters during the Skeletonema Costatum HAB event in 2007

According to monitoring results by NCSEMC, there were several times of rainfall in Qingdao before the HABs event, especially on 10th ~11th of August the rainfall was over 240mm. The rainfall input terrestrial nutrients into the target sea area. As a result, the concentration of silicate increased over 10 times, along with the significant increase in concentrations of other nutrients. As shown in figure 7, the concentrations of both silicate, nitrate and ammonium were over 30μ mol/L, and the concentration of phosphate was over 0.6μ mol/L. Therefore, sufficient nutrients and suitable environmental conditions resulted in the HABs event that lasted for 4 days.

5.11. Meteorological observation parameters

The meteorological data were recorded in table 16 during the *Skeletonema Costatum* HAB event in 2007. The major parameters included temperature, air pressure, wind speed, wind direction and so on.

r	Table 10 Meteorological observation parameters during 11/15 event							
Spot	Temperature	Air pressure	Wind	Wind direction(°)			Weather	
	(°C)	(hpa)	speed(m/s)	20th	21th	22th	23th	condition
6	22.2~26.8	1000.4~1008.1	0~5.3	С	164	34	94	Sunny
8	22.2~26.8	1000.4~1008.1	0~5	С	144	34	94	Sunny
9	22.3~26.9	1000.4~1008.1	0~5.7	С	124	24	84	Sunny
14	22.5~26.9	1000.4~1008.1	0~5.7	С	144	34	84	Sunny
15	22.5~27.0	1000.4~1008.1	0~5.4	С	104	34	94	Sunny
18	22.9~26.8	1000.3~1008.1	1.5~5.7	164	134	24	84	Sunny
19	22.8~26.8	1000.3~1008.1	1.3~5.5	174	134	44	84	Sunny
20	26.2~26.9	1000.3~1008.1	1.9~4.2	184	124	34	94	Sunny

Table 16 Meteorological observation parameters during HAB event

21	26.1~26.9	1000.3~1008.1	1.7~4.6	194	124	24	94	Sunny
----	-----------	---------------	---------	-----	-----	----	----	-------

As shown in the above table, during the HAB event, the weather maintained sunny with no rain, which was favorable for plankton growth because of strong photosynthesis. The wind was mild, less than 5m/s in most cases, and in some spots only static wind existed. Slow wind speed is favorable for phytoplankton growth, without being disturbed by strong waves. In summary, the meteorological condition was also fit for *skeletonema costatum* blooming.

6. Conclusion

The target sea area in the report, Jiaozhou Bay and eastern part of Qingdao coastal waters, are some of the HAB occurrence areas in North Yellow Sea. The scale of HAB events increased significantly from less than 10km² in early 1990s to 50~70 km² on average in recent years. The major causative species include diatoms—mostly *Skeletonema costatum*, as well as zooplankton—mostly *Mesodinium rubrum* and also *Heterosigma Akashiwo* in recent years. Duration HAB events, the maximum density of the HAB organisms reached 9.34x10⁷ cells/L. Eutrophication is one of the important reasons of HAB events in the target sea area. The concentration of nutrients in recent years has been present at a much higher level as compared to the early 1990s. Moreover the meteorological conditions in summer and early autumn are suitable for the growth of HAB organisms, especially after nutrient input caused by rainfall, with most HABs events occuring during this period.

7. Reference

State Oceanic Administration, 2003-2007. Annual Report of China Marine Environment(2003-2007).

Ministry of Environmental Protection of the People's Republic of China, 2001-2007. Annual Report of Offshore Water Environment of China.(2001-2007)

Ocean and Fishery Administration of Shandong Province, 2006. Annual Report of Marine Environment of Shandong Province (2006).

National Marine Data & Information Service, 2004-2005. Annual Report of Marine Enviroment of Qingdao.(2004-2005)

Chen Lili, Shi Xiaoyong, Cheng Xiaojie, Zhu Chenjian, Wang Xiulin, 2006. Preliminary discussion on sea water quality status in the 2008 Olympics boat-sailing field. Marine Environmental Science, 25(1): 49-51.

Shi Xiaoyong, Chen Lili, Zhu Chenjian, Wang Xiulin, 2007. Preliminary Discussion on the Sea Water Quality Status in the 2008 Olympics Boat-sailing Field and Adjacent Area. Marine Science Bulletin, 9(2): 90-96.

Li Guijiao, Yin Hua, Peng Hu, 2001. State and Prospect of Red Tide Research. Chongqing Environmental Science, 23(3): 38-41.

Wang Xiu-lin, Sun Peiyan, Gao Zhen-hui, Han Xiurong, Chen Jiang-lin, Advances in Red Tide Prediction Method in China. Advances in Marine Science, 21(1): 93-98.

Lou Angang, Wang Xuechang, Wu Dexing, Xi Pangen, Sun Changqing, 2002. Prediction of water quality adjacent sea area of Daguhe Estuary in Jiao zhou Bay. Marine Environmental Science.

Pan Delu, Mao Tianming, 2000. Study on Ocean Color Environment of China Coast by Satellite Remote Sensing. Quaternary Sciences, 20(3): 240-246.

Lu Min, Zhang Longjun, Li Chao, Zou Li, Zhang Jing, 1999. Analysis of the Ecological Environment Elements in the Red Tide Generating and Vanishing Process in the Eastern Jiaozhou Bay in July,1999. Journal of Oceanography of Huanghai and Bohai Seas, 19(4): 43-50.

Zhang Yongshan, Wu Yulin, Zou Jingzhong, Yu Zhiming, Pu Xinming, 2002. A Red Tide Caused by Diatom Eucampia Zoodiacus in the Jiaozhou Bay. Oceanologia Et Limnologia Sinica, 33(1): 55-61.

Han Xiaotian, Zou Jingzhong, Yu Zhiming, Huo Wenyi, 2001. Analysis of dynamic process and the causes of Eucampia zoodiacus red tide in Jiaozhou Bay. Journal of Fisheries of China.

Liu Dongyan, Sun Jun, Chen Hongtao, Zhang Liyong, 2003. The Phytoplankton Community in Summer 2001 in Jiaozhou Bay, China. Journal of Ocean University of Qingdao, 33(3): 366-374.

Wei Yishan, Xue Jing, 2004. Preliminary research of current environmental situation of sea water in Hongdao area of Jiaozhou Bay in 2003. Marine Sciences, 28(9): 75-77.

Fu Mingzhu, Li Zhengyan, Gao Huiwang, 2007. Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers. Chemosphere, 69: 1009–1016.

Dai Jicui, Song Jinming, Li Xuegang, Yuan Huamao, Li Ning, Zheng Guoxia, 2007. Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay, North China. Environmental Pollution, 145: 656-667.

Liu Dongyan, Sun Jun, Zou Jingzhong, Zhang Jing, 2005. Phytoplankton succession during a red tide of Skeletonema costatum in Jiaozhou Bay of China. Marine Pollution Bulletin, 50: 91-94.

Liu Dongyan, Sun Jun, Zhang Jing, Liu Guangshan, 2008. Response of the diatom flora in Jiaozhou Bay, China to environmental changes during the last century. Marine Micropaleontology. 66: 279-290.

Wu Yulin, Sun Song, Zhang Yongshan, 2005. Long-term Change of Environment and it's Influences on Phytoplankton Community Structure in Jiaozhou Bay. Oceanologia Et Limnologia Sinica, 36(6): 487-498.

Guo Feng, Chen Jufa, Chen Bijuan, Cui Yi, 2005. Distribution and change feature of inorganic nitrogen and phosphate in the north part of Jiaozhou Bay. Marine Fisheries Research, 26(6): 34-38.

Liu Dongyan, Sun Jun, TangYoucai, Qian Shube, 2002. Study on the Phytoplankton in the Jiaozhou Bay : Species Composition and Abundance. Journal of Ocean University of Qingdao, 32(1): 67-72.

Han Xiaotian, Zou Jingzhong, Zhang Yongshan, 2003. Harmful algae bloom species in Jiaozhou Bay and the features of distribution. Marine Sciences, 28(2): 49-54.

Song Xiuxian, Yu Zhiming, 2007. Nutrient Effect on Phytoplankton in Typical Mariculture Waters in Summer in the Northeast of the Jiaozhou BAY. Oceanologia Et Limnologia Sinica, 38(5): 446-452.

Yao Yun, Shen Zhiliang, 2007. Seasonal and Long-term Variations Innutrients in North-eastern of Jiaozhou Bay, China. Advances in Water Science, 18(3): 379-384.

Wang Yong, Jiao Nanzhi, 2001. Response of Phytoplankton to Nutrient ADDI-Tion in Jiaozhou BAY. Marine Sciences, 26(4): 8-12.

Li Guangyu, Lu Jing, He Yongju, 2005. Relation Between Diversity of Phytoplankton and EN-Vironmental Factors in the Jiaozhou Bay. Marine Geology Letters, 21(4): 10-13.

Li Yan, Li Ruixiang, Wang Zongling, Zhu Mingyuan, Sun Pixi, XIA Bin, 2005. A Preliminary Study on Phytoplankton Community Structure and Its Changes in the Jiaozhou Bay. Advances in Marine Science, 23(3): 328-334.

Liu Dongyan, Sun Jun, Zhang Liyong, 2003. Structural characteristics of phytoplankton community during harmful algae bloom in Jiaozhou Bay. J. Appl. Ecol. 14(11): 1963-1966.

Liu Dongyan, Sun Jun, Qian Shuben, 2002. Study on the Phytoplankton in Jiaozhou Bay : Influence of the Environmental Factors to Phytoplankton Community. Journal of Ocean University of Qingdao, 32(3): 415-421.

Zhu Aimei, Ye Siyuan, Lu Wenxi, Wang Hongji, 2006. Geochemistry of Nitrogen, Phosphorus and Iron at the Water-Sediment Interface in Jiaozhou Bay. Marine Geology & Quaternary Geology, 26(6): 55-64.

Yao Yun, Shen Zhiliang, 2004. Assessment of seawater eutrophoication in the Jiaozhou Bay. Marine Sciences, 28(6): 14-22.

Sun Pixi, Wang Zhongling, Zhan Run, Xia Bin, Wang Xiangqin, 2005. Study on Dissolved Inorganic Nitrogen Distributions and Eutrophication in the Jiaozhou Bay. Advances in Marine Sciences, 23(4): 466-471.

Sun Youshan, Sun Hekun, Wang Xuechang, Wei Zhiqiang, 2007. Survey and Appraisal of Seawater Quality in Jiaozhou Bay. Transactions of Oceanology and Limnology, (4): 93-97.

Zhang Liyong, Liu Dongyan, Sun Jun, Zou Jingzhong, 2004. Feature of Phytoplankton Community in the Nugushan Area of Jiaozhou Bay During the Red-Tide-Frequently-Occurring Summer Time. Journal of Ocean University of Qingdao, 34(6): 997-1002.

Li Chaolun, Zhang Fang, Shen Xin, Yang Bo, Shen Zhiliang, Sun Song, 2005. Concentration, Distribution and Annual Fluctuation of Chlorophyll-a in the Jiaozhou Bay. Oceanologia Et Limnologia Sinica, 36(6): 499-506.

Ge Ming, Wang Xiulin, Yan Ju, Shi Xiaoyong, Zhu Chenjian, Jiang Fenghua, 2003. The Calculation of Environmental Capacities of Nutrients in the Jiaozhou Bay. Marine Sciences, 27(3): 36-42.

Yao Yun, Zheng Shiqing, Shen Zhiliang, 2007. Study on the Mechanism of Eutrophication in the Jiaozhou Bay. Marine Science Bulletin, 26(4): 91-98.

Wang Yong, Zhao Peng, Shan Baotian, 2002. Preliminary In-situ Experimental Studies of Nutrient Limitation to Phytoplankton in Jiaozhou Bay. Marine Sciences, 26(10): 55-58.

Zhao Nan, Zhang Wuchang, Sun Song, Song Weibo, Zhang Yongshan, Li Guomin, 2007. Spatial Distribution of Some Large Tintinnids(Protozoa, Ciliophora, Tintinnida) in Jiaozhou Bay. Oceanologia Et Limnologia Sinica, 38(5): 468-475.

Huo Wenyi, YuZhiming, Zou Jingzhong, Song Xiuxian, Hao Jianhua, 2001. Outbreak of Skeletonema Costatum Red Tide and Its Relations to Environmental Fctors in Jiaozhou Bay. Oceanologia Et Limnologia Sinica, 32(3): 311-318.