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1. Introduction 

 

In coastal waters, seagrass and seaweed beds (Figures 1 and 2) provide important ecological functions 

such as habitats for animals and plants, and stabilizing effects of environments such as buffering effect of 

currents and water movement, promotion of sedimentation, absorption of nutrients, production of oxygen, 

sediment retention, etc. ( e.g. Komatsu, 1996; Komatsu, 1989; Komatsu and Yamano, 2000). Thus they 

contribute to marine biodiversity and also human society through ecological services (e.g. Costanza et al., 

1997). They have been destroyed due to human impacts such as direct ones of fisheries and reclamation, 

indirect ones such as pollution through aquaculture and urban and industrial wastewaters during economic 

development (Komatsu, 1997).  

In the Seto Inland Sea, fish culture such as yellowtail has been developed since 1960s. In Asia, 

aquaculture (e.g. shrimp and marine fish farming) has also been developed since 1970-80s (e.g. Guiji and 

Finger-Stich, 1996; Huitric et al., 2002). Aquacultures such as yellowtail and sea breams need a large quantity 

of live baits such as anchovy, sardine and mackerel. Cultured fish excrete a large quantity of feces and urine 

into water. Since cultured fish don’t consume all fed bait, leftovers appear. These organic matters are 

decomposed by aerobic bacteria consuming oxygen in seawater. Nutrients produced from organic matters 

promote an increase in phytoplankton and generate harmful algal blooms. In such a phytoplankton rich 

environment, transparency is decreased. Eventually, lower depth limits of seagrass beds become shallower 

and seagrass beds are shrunk. On the sea bed, sediments become anaerobic condition and muddy due to 

accumulation of organic matter on the seabed and consumption of oxygen by aerobic bacteria decomposing 

organic matters. While repeat of fish culture for long time, feces, urine and leftovers of fish deteriorate water 

quality and bottom sediment quality, which is called as self pollution. Consequently, sandy bottom is changed 

to soft muddy bottom due to increase in thickness of anaerobic layer. The soft muddy bottom prevents 

seagrasses from rooting because they are easily taken off from the bottom by the waves and currents. This is 

also true for shrimp culture because discharge from shrimp ponds causes eutrophication and lead to 

destruction of seagrass and seaweed beds due to water quality deterioration (e.g. Dierberg and Kiattisimkul, 

1996; Naylor et al., 2000).  

Seagrass and seaweed beds, however, have to be conserved for marine biological diversity and 

sustainable development of fisheries and society. For maintaining sound seagrass and seaweed beds, it is 

necessary to monitor their present spatial distributions, and to establish databases and information networks 

to share and disseminate their data to manage these beds (Komatsu et al., 2002c). We can also analyze 

archived satellite images to know past seagrass and seaweed distributions. In this manual, we introduce a 

practical satellite remote sensing method specialized for mapping seagrass and seaweed beds including 

validation of satellite images by ground truthing.  
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Figure 1. Photo showing Zostera caulescens Miki in Funakoshi Bay, Iwate Prefecture, Japan 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Photos showing forests of brown algae, Stephanocystis hakodatensis (Yendo) Draisma, 

Ballesteros, Rousseau et Thibaut (left photo), and Saccharina japonica (Areschoug) Lane, Mayes, Druehl et 

Saunders var. religiosa (Miyabe) Yotsukura, Kawashima, Kawai, Abe et Druehl (right photo) off Kamoenai, 

west coast of Hokkaido, Japan.   
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2. Optics for remote sensing 

 

Light is one type of electromagnetic radiation, of which the true units are W m-2 sr-1 µm-1, consisting of 

wide range of wave lengths. Although visible and near-infrared bands are generally available in satellite 

images, the visible bands can penetrate into the sea deeper than ultra-violet and near-infrared which are easily 

absorbed by the surface thin layer (Kawahara et al., 2000). Thus, visible bands are used for mapping habitats 

in coastal waters under the sea. In the ocean, a blue band and a red band reach the deepest and shallowest 

depths among blue, red and green bands, respectively (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Patterns of vertical penetration of light between ultraviolet and infrared into the water (Source: 

http://www.seos-project.eu/modules/oceancolour/oceancolour-c01-p07.html)  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic view of passage of electromagnetic radiation from the Sun to the satellite sensor through 
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atmospheric layer, sea water column and sea bottom surface. 

Remote sensing by a satellite utilizes radiance of the visible bands from the sea beds received by an 

optical onboard sensor. The passage of visible band radiation from the sun to the satellite sensor is shown as 

a simplified schematic diagram in Figure 4. The visible band radiation from the sun passes two layers: 

atmosphere and water. In both layers, a part of light is absorbed and scattered by molecules and particulates 

from the sun to the sea bottom and from the sea bottom to the satellite. A part of light is also reflected by the 

sea surface. Radiances of visible bands recorded as digital numbers of pixels by the satellite sensor include 

bottom reflectance depending on substrate types (Figure 4). Thus, difference in reflectance of visible bands 

on the bottom surface under the shallow sea can be used to classify substrate types. In general, an optical 

sensor mounted on a satellite detects three bands of blue, green and red colors, while spectral distribution of 

each band depends on the optical sensor. Blue band is important to detect bottom types in deeper depth.  

Reflectance is a ratio of leaving to incident radiation of a certain spectral window on surface of substrate. 

Figure 5 shows reflectance of sand and one species of Mediterranean seagrass, Posidonia oceanica L., from 

ultra-violet to infrared measured with a spectrometer (FieldSpec Pro, Analytical Spectral Devices Inc., USA) 

of which the instantaneous field of view was 25 degree. We put samples into a basin with a diameter of 30 

cm, which was painted in black paint not to enter the light from surrounding environment into the basin. We 

measured radiances of the samples and a white disk around noon in a fine day without clouds from a wave 

length of 350 nm to 2500 nm at one nm intervals. Reflectance of a sample was calculated by dividing radiance 

of the sample with that of the white disk at each wave length. We can find the differences in reflectance of 

visible bands between them. Since sand reflects from short wave length to long wave length, its color is white. 

On the other hand, the seagrass reflects green band around 550 nm. Then its color is green. If differences in 

reflectances exist corresponding to spectral windows of satellite optical sensor, it is possible to distinguish 

substrate types. 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reflectance level with reference to wavelength for each bottom feature (Mahares). Values (bold 

lines) are shown as the mean (±standard deviation represented by broken lines). For each bottom feature, n=5. 

(Source: Sagawa et al., 2010) 
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3. Satellite images and software 

3. 1. Spatial, spectral and radiometric resolutions of satellite images 

 

A multiband satellite image includes multiband data, which are generally composed of blue, green, red 

and near-infrared layers. Each layer consists of raster cells, pixels. One pixel corresponds to an area with 

intensity of upwelling radiation of this band through the area on the Earth surface. For mapping coastal 

habitats, the spatial resolution of satellite images must be finer than a habitat dimension. Thus, the most 

important thing for remote sensing of coastal habitats is that plural pixels more than five can cover an area 

of habitat to detect it. This relation is relative between spatial resolution of satellite and areas of habitats. In 

generally, seagrass and seaweed beds are distributed in a horizontal scale of several meters to hundred or 

thousand meters. World View 2/3, Geo Eye-1, Quick Bird-2, IKONOS, Pleiades-1/2, SPOT 6/7, LANDSAT 

8 OLI, LANDSAT ETM+, ALOS AVNIR-2 have the spatial resolutions described in Table 1. They can detect 

marine habitat on the sea bottom greater than their own limits of habitat sizes. Images of World View 2/3, 

Geo Eye-1, Quick Bird-2, IKONOS and Pleiades-1/2 have very high spatial resolutions of pixel less than 4 

m (Table 1).  

Radiometric resolution is an ability of sensor to discriminate small differences in the magnitude of 

radiation within the ground area that corresponds to a single raster cell. When the bit depth (number of data 

bits per pixel) of the images that a sensor records is great, its radiometric resolution is high. Digital sensors 

of satellite record the intensity of electromagnetic radiation from each spot viewed on the Earth’s surface as 

a digital number (DN) for each spectral band. The exact range of DN that a sensor utilizes depends on its 

radiometric resolution. The World View 2/3, Geo Eye-1, Quick Bird-2, IKONOS sensors, for example, have 

11 bits (0-2047) per band per pixel and Pleiades-1/2 and LANDSAT 8 OLI have 12 bits (0-4094), while 

ALOS AVNIR 2 and LANDSAT ETM+ have 8 bits (0-255) (Table 1). Thus the first two groups of satellites 

can distinguish small differences in the magnitude of radiation among substrate types. 

Spectral resolution is the ability of a sensor to detect small differences in wavelength. A panchromatic 

sensor is sensitive to a broad range of wavelengths. An object that reflects a lot of energy in the blue area of 

the visible band would be indistinguishable in a panchromatic photo from an object that reflected the same 

amount of energy in the red band. A sensing system with higher spectral resolution would make it easier to 

distinguish the two objects apart. Geo Eye-1, Quick Bird-2, IKONOS, Pleiades 1/2, SPOT 6/7 and ALOS 

AVNIR 2 have multiband sensors measuring blue, green, red and infrared bands while SPOT XS does green, 

red and infrared bands (Table 1). Their spectral resolutions are similar. World View 2 and 3 have coastal, blue, 

green, yellow, red and infrared bands. LANDSAT 8 OLI has coastal (new deep blue), blue, green, yellow, 

red and two infra red bands. Sensors with high spectral resolution are a hyper spectral sensor. Compact 

airborne hyper spectral bands (CASI) have been often used for mapping coral reef ecosystems. This system 

is very effective with high spatial and spectral resolutions for coastal mapping. However, their cost is very 

expensive including cost of survey with an airplane. A large quantity of data obtained by CASI requires heavy 

processing.  
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Table 1. Representative satellite multispectral sensors, their spatial resolutions, swath width, band 

spectral ranges in nm of sensors and panchromatic bands, average revisit days and dynamic ranges. 

Satellite 
Spatial 

resolution (m) 

Swath 

width 

(km) 

Multi and panchromatic 

bands (nm) 

Average revisit and 

dynamic range 

WorldView-2    

WorldView-3 

WV-2 WV-2 Coastal 400 – 450 WV-2 

Pan 0.46 16 Blue 450 – 510 3.7 days 

Multi 1.85  Green 510 – 580 11 bit/pixel 

   Yellow 585 – 625   

WV-3 WV-3 Red 630 – 690 WV-3 

Pan 0.34 13 Red Edge 705 – 745 4.5 days 

Multi 1.38  NIR1 770 – 895 11 bit/pixel 

   NIR2 860 – 1040   

   Pan 450-800   

GeoEye-1 

Pan 0.41 15.2 Blue 450-510 3 days 

Multi 1.64  Green 520-580   

   Red 655-690 11 bit/pixel 

   NIR 780-920   

   Pan 450-900   

Quick Bird-2 

Pan 0.61 16.5 Blue 450-520 3.5 days 

Multi 2.4  Green 520-600   

   Red 630-690 11 bit/pixel 

   NIR 760-900   

   Pan 450–900   

IKONOS 

Pan 1 11.3 Blue 450-530 3 days 

Multi 4  Green 520-610   

   Red 640-720 11 bit/pixel 

   NIR 760-860   

   Pan 450-900   

   Pan 0.5 20 Blue 450-530 4 days 

Pleiades-1 
Multi 2.8  Green 510-590   

   Red 620-700 12 bit/pixel  

Pleiades-2 
   NIR 775-915   

   Pan 480-820   

  

  

Spot-6 

Pan 1.5 

Multi 8 

  

60 
Blue 455-525 26 days 

Green 530-590   
 Red 625-695 12 bit/pixel  
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Spot-7 
   NIR 760-890   

   Pan 455-745   

LANDSAT 8 OLI 

Pan 15 180 
New Deep 

Blue 
433-453 16 days 

Multi 30  Blue 450-515   

   Green 525 – 600 12 bit/pixel  

   Red 630 – 680   

   NIR 845 – 885   

   Pan 500 – 860   

LANDSAT 7 

ETM+ 

Pan 15 180 Blue 450-520 16 days 

Multi 30  Green 530 – 610 8bit/pixel 

   Red 630 – 690   

   NIR 780-900   

   Pan 520 - 900   

    Pan 2.5 70 Blue 420-500 46 days 

ALOS  AVNIR-2 Multi 10  Green 520-600   

  (Multi)    Red 610-690 8 bit/pixel 

  PRISM    NIR 760-890   

  (Pan)    Pan 520-770   

 

 

 

3.2. Availability of satellite images and software 

 

Non-commercial satellite images of LANDSAT TM have been archived since 1972. Downloading 

digital data of LANDSAT 1-5 MSS, LANDSAT 4-5 TM, LANDSAT 7 ETM+ and LANDSAT 8 OLI is via 

internet by University of Maryland (http://glcfapp.glcf.umd.edu:8080/esdi/index.jsp) or United States 

Geological Survey (http://earthexplorer.usgs.gov) for free of charge. Due to problem of sensor, the present 

LANDSAT 7 ETM+ hasn’t supplied any good images for remote sensing since 2002. In 2006, non-

commercial satellite, Advance Land Observation Satellite (ALOS), launched by JAXA has a multispectral 

sensor, AVNIR-2, with 10 m spatial resolution and a panchromatic sensor, PRISM, with 2.5 m spatial 

resolution. These sensors that have spatially more precise than those of LANDSAT 7 ETM+ permit us to map 

coastal areas with various ecosystems and fishing activities. While ALOS has been out of service since April 

2011 because of electric power depletion, archives of ALOS AVNIR-2 from 2006 to 2011 are available. 

NASA launched LANDSAT 8 that is successor of LANDSAT 7 in 2013. LANDSAT 8 OLI (Operational 

Land Imager) has higher radiometric and spectral resolutions and more visible bands, which allow us to map 

coastal habitats by analyzing their images.  
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Commercial or slightly costing satellite images are also available. World View 2/3, Geo Eye-1, Quick 

Bird-2, IKONOS and Pleiades-1/2 have multiband images with very high resolution (Table 1). There is a lot 

of commercial software for remote sensing such as ENVI, ERDAS Imagine, TNTmips, etc. Although their 

academic prices are reasonable, they are still expensive. Free software for remote sensing and GIS is also 

available via internet such as GRASS (http://grass.fbk.eu/index.php) and Multispec 

(https://engineering.purdue.edu/~biehl/MultiSpec/). They are software as effective as commercial 

software. 
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4. Ground- truthing of sea bottom 

 

Ground truth is to obtain a coverage data of location in situ and in reality corresponding to a pixel on 

satellite image in order to verify contents of the pixel on the image on land. While, in the sea, we use sea 

truth instead of ground truth on land, it is better to use ground truth for verifying bottom surface covers on 

the bottom ground. When we classify the image, it is needed to know classification is successful or not. In 

this case, we use sea truth data for determining an accuracy of the classification to minimize errors in the 

classification.  

Ground-truthing is conducted on site, performing bottom observations and measurements of substrates 

covering resolution cells studied on the remotely sensed digital image. The observations require highly 

accurate GPS to plot substrates on the geographic coordinates. For geometric correction of image, we also 

measure some typical locations that we can identify on the satellite image with a highly accurate GPS. These 

locations are called as Ground Control Points (GCPs) used for geometric correction. Software for remote 

sensing provides a function for the geometric correction with position data of GCPs as mentioned later.  

Ground truth data are indispensable for supervised classification of an image. When data of bottom 

cover types with location are available, they can allocate attributes of pixels corresponding to their locations 

on an image. The spectral characteristics of pixels of the image corresponding to bottom covers on these sites 

are used for decision rules for classifying the other pixels of the image. In most cases, we divide ground truth 

data into two groups: one for training and the other for classification success. The latter data is to make an 

error matrix to evaluate the accuracy of the classification.  

Mapping methods of seagrass beds are classified into two categories. One is a direct observation or 

measurement by researchers. The other is an indirect method using a remote sensing apparatus. Direct 

methods are ground-truthing surveys (walking, diving, grabbing, camera or video). In France, observation 

from a submarine was used to map lower bottom depth limit of P. oceanica beds along the French Riviera 

Coast (Meinesz and Laurent, 1978) because P. oceanica beds extend to bottom depths of 30-40 m. Direct 

methods are not efficient because they need time and persons to perform field surveys. Indirect methods are 

classified into acoustic and optic ones (Komatsu et al., 2003b). The former method includes echosounder, 

sidescan sonar and multibeam sonar. Echosounder can obtain echograms that are vertical acoustic profiles 

showing vertical distribution of seagrass beds. Komatsu and Tatsukawa (2006) used echosounder to map 

Zostera marina beds in Ajino Bay in Seto Inland Sea. Sidescan sonar can obtain horizontal images of bottom 

surface like aerial photography using ultrasounds. Sagawa et al. (2008) used sidescan sonar to map horizontal 

distributions of seagrass beds in Funakoshi Bay, Sanriku coast, Japan. They could classify two species of 

seagrasses based on acoustic shadow lengths of short Zostera asiatica Miki and long Z. caulescens Miki. 

Narrow multibeam sonar can map bottom topography using several decadal or hundred narrow sound beams. 

Komatsu et al. (2003) mapped seagrass beds in Otsuchi Bay, Sanriku coast, Japan.  

Before presenting both methods, it is necessary to explain localizing positions where direct or indirect 

methods are applied. 
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4. 1. Localization of ground-truthing sites in situ  

 

It is very important to localize geographical positions of ground-truthing sites as precise as possible 

because we use these positions for classifications and/or evaluation of classification of bottom substrates. 

The Global Positioning System (GPS) became available in 1980s. It permits us to localize instantaneously a 

geographical position of a ground-truthing site. The accuracy of GPS has been ameliorated from 36 m (95% 

confidence level) to 6 m (95% confidence level) since 2000 because of the removal of Selective Availability 

(SA) from GPS (stopping the intentional degradation of the GPS signals) on 2 May 2000. In the world, 34 

countries have already installed Differential GPS (D-GPS) radio beacon networks in territory of each country, 

and more are considering the adoption of this navigation standard. The improvement of the basic GPS signal 

through elimination of SA may allow the D-GPS radio beacons to transmit fewer error corrections and more 

accurate localization. Accuracy of D-GPS is about several decadal centimeters.  

Another system to ameliorate precision of localizations with GPS is a satellite-based augmentation 

system (SBAS), such as European Geostationary Navigation Overlay Service (EGNOS), complement 

existing global navigation satellite systems (GNSS) (Table 2). The SBAS concept is based on GNSS 

measurements by accurately-located reference stations deployed across an entire continent (Figure 6). The 

GNSS errors are then transferred to a computing center, which calculate differential corrections and integrity 

messages which are then broadcasted over the continent using geostationary satellites as an augmentation or 

overlay of the original GNSS message. Several countries or a region have implemented their own satellite-

based augmentation system. The SBAS can augment precision of positions within 1 m to 0.5 m. 

 

Table 2. Satellite-based augmentation systems (SBASs) provided by a region or countries 

 

 

 

  

Country or region Name of satellite system 

Europe European Geostationary Navigation Overlay Service (EGNOS) 

USA Wide Area Augmentation System (WAAS) 

Japan Multi-functional Satellite Augmentation System (MSAS) 

India GPS and GEO Augmented Navigation (GAGAN) 

Russia System for Differential Corrections and Monitoring (SDCM) 
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Figure 6. Area covered by different SBAS systems in the world (Source: 

http://sxbluegps.com/technology/sbas-made-easy/) 

 

 

On 11 September 2010, the Japan Aerospace Exploration Agency (JAXA) launched the Quasi-Zenith 

Satellite System (QZSS) called “Michibiki”. It is a proposed three-satellite regional time transfer system and 

Satellite Based Augmentation System for the Global Positioning System, which would be receivable within 

Japan. Now only one Michibiki flies along an orbit of eight shape between Japan and Australia. JAXA will 

launch other three Michibiki satellites for covering Japanese area during 24 hours in the near future. At this 

moment, we can use Michibiki when it passes on Japan. It is estimated that the errors of localization are 

within 1 m. Some recent GPS can detect signals from Michibiki. It is recommended to use the GPSs which 

can receive Michibiki, SBAS and/or D-GPS with GLObal'naya NAvigatsionnaya Sputnikovaya Sistema 

(GLONASS) in Russia and BeiDou Navigation Satellite System in China because they are sold at reasonable 

prices. 

 

 

4. 2 Direct methods 

 

4. 2. 1. Walking and diving 

 

When bottom depths are less than 1 m or tidal flats emerged from the sea surface, we can walk on the 

bottom to observe bottom substrates with GPS. It is very easy to obtain ground-truth data. On the other hand, 

it is needed to dive to observe the bottom when the sea level becomes high. Diving belongs to direct methods 

and is very sure for detecting bottom substrates. A merit of diving is to identify bottom covers, especially 

species compositions and densities of seagrass cover. However, it is laborious and not efficient to take data 

at many points. It is noted that the area observed by a diver is within several meters. When another person 
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measures positions of a diver from the boat with GPS, the error of positions becomes greater. This method 

can‘t be applied to turbid water areas.  

 

4. 2. 2 .Manta tow 

 

Manta tow is a simple method that a diver tracked by a boat takes continuous pictures as shown in Figure 

7. When we use a boat, this method is very useful to take ground-truthing data at places where water clarity 

is high. A diver takes pictures with a digital camera from the sea surface at intervals of several seconds. If 

the time of camera is synchronized with a GPS, we can map bottom pictures on a geographical chart. GPS 

put in a plastic bag is fixed on the head of diver not to submerge it under the sea for receiving GPS signals.   

 

 

 

 

 

 

 

Figure 7. A schematic view of manta tow (Source: http://yunita-arum.blogspot.jp/2012/01/ekosistem-

terumbu-karang-di-indonesia.html) 
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4. 2. 3. Video observation 

 

Video observation is sometimes called as a drop camera observation. It is easier than diving observation. 

We lower the camera and monitor bottom features. It is better that the person who lowers the camera has GPS 

on his pocket to identify positions of camera. Time of camera and GPS must be synchronized. This 

observation is sensitive to turbidity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pictures showing video camera system for sea-truthing in Akkeshi Bay, east Hokkaido. Underwater 

video camera is lowered from the boat (left picture). An observer monitors bottom features by the display in 

the cabin (right picture) 

 

 

4. 2. 4. Video towing 

 

Recently, towing video camera system has been developed (Norris et al., 1997). The camera is mounted 

in a ‘down-looking’ orientation on a towfish, which was deployed directly off the stern of the vessel using 

the cargo boom. However, it is also sensitive to turbidity. 

 

 

4. 3. Indirect methods 

 

4. 3. 1. Echosounder  

 

Echosounders have been developed to detect distributions of fish schools and to measure underwater 

bottom topographies. They send out ultrasonic waves of a certain frequency in the water and measure their 

reflection from bottoms and objects in the sea. Because the reflection coefficient of ultrasonic depends on 

materials of objects, especially air content in leaves of seagrasses, we can identify the objects in clear cases. 
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The echosounders have advantages not only to continuously measure biomass distributions and bottom 

topographies, but also to be used at a low cost and easy treatment. This method has been applied to several 

studies in phanerogam beds in lakes (Duarte, 1987), Zostera marina L. beds (Hatakeyama and Maniwa, 1978; 

Komatsu and Tatsukawa, 1998) (Figure 9) and P. oceanica meadows (Colantoni et al., 1982; Rey and Diaz 

del Rio, 1989).  

Colantoni et al. (1982) tried to use a low frequency echosounder (3.5 kHz); it proved to be rather 

ineffective to discriminate the acoustic character between P. oceanica bed and the bottom. Although the high-

resolution continuous seismic reflection (3.5 kHz) could distinguish the P. oceanica and others (Rey and Diaz 

del Rio, 1989), long wavelength of ultrasonic brings worse vertical precision of echosounder. Echosounders 

with an ultrasonic wave of 200 kHz is more appropriate for detecting seagrass beds (Figure 9) (Hatakeyama 

and Maniwa, 1978; Komatsu and Tatsukawa, 1998). 

The echosounder can scan seagrass beds when traveling at about 1.0-1.5 m s-1 (2-3 knots). It is possible 

to investigate 37 km per day when a ship with an echosounder travels at 1 m s-1 (2 knots) for ten hours 

(Komatsu and Tatsukawa, 1998). In this way, the echosounder is a very useful apparatus to map seagrass 

beds.  

Hatakeyama and Maniwa (1978) used the echosounder for mapping a Zostera bed, but they calculated 

only an index of biomass: sum of canopy heights by unit sector along transects scanned by the echosounder. 

Since it is necessary to estimate seagrass or seaweed biomass for a quantitative comprehension of the their 

ecosystems, Komatsu and Tatsukawa (1998) proposed a simple converting method from the shading grades 

of seagrass on echograms to above-ground biomass based on quadrat samplings (Figure 10). From these 

echograms, we can extract locations of seagrass and others for satellite remote sensing. 
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Figure 9. Raw records of echo trace along a transact in Ajino Bay, Japan cited from Komatsu and Tatsukawa 

(1998). A depth of 0 m is the sea surface, which is not standardized to the depth relative to the mean sea level. 

 

The position of the lower bottom depth limit of seagrass beds is related to the light extinction coefficient 

influencing the minimum degree of light required for growth of seagrass (Duarte, 1991). Thus, it can be used 

for an indicator of water quality. In France, the lower bottom depth limit of P. oceanica was monitored by 

placing concrete markers (Meinesz, 1977). In this case, obtained results are very precise, but the observed 

area is limited. The echosounder can be used to define the vertical distribution of seagrass bed and the lower 

bottom depth limit of seagrass beds by correcting depths measured by the echosounder to the mean sea level. 

Therefore, monitoring of the lower bottom depth by the echosounder is useful for detecting the lower bottom 

depth limit of seagrass beds not precisely but roughly in a wide area. When these two types of monitoring 

are coupled, they complement each other to obtain lower bottom depth limits. 

  Komatsu and Tatsukawa (1998) clarified that the canopy height was nearly proportional to the 

maximum blade length (Figure 10). By cropping blades of seagrass, the height of seagrass canopies on the 

echo-traces can be used as an indicator of the maximum blade length of seagrass when the current speeds 

were not greatly different over the beds. Tanaka and Tanaka (1985) also reported a similar proportional 

relation between the canopy height and maximum frond lengths of Sargassum species.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Echogram (upper panels) and blade length distribution (lower panels) obtained by a quadrat 

sampling of 0.5 x 0.5 m at Stations 11-17 (Komatsu and Tatsukawa, 1998). The mark “*” indicates 
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transformed data from quadrat sampling of 1x1 m to that of 0.5 x 0.5 m due to small quantity of seagrass 

shoots. Grades of echo traces of seagrass beds were shown at the lower part of the vertical line representing 

the station by the following characters: G1: Grade 1 (no seagrass); G2: Grade 2 (sparse seagrass); G3: Grade 

3 (intermediate dense seagrass); G4: Grade 4 (dense seagrass). Blades lengths are shown as vertical lines 

from the smallest one to the largest one in order in each Figure at the stations (lower panels). 

 

4. 3. 2. Sidescan Sonar 

 

One acoustic method to map seagrass beds using a side scan sonar, which is more efficient than that of 

the ground surveys, has been developed since 1970s in the Mediterranean Sea. It scanned sea bottom at a 

width ranging 50-500 m, and could distinguish seagrass bed distributions and the others successfully (Newton 

and Stefanon, 1975; Meinesz et al., 1981; Lefèvre et al., 1984; Gloux, 1984; Ramos and Ramos-Espla, 1989; 

Pasqualini et al., 1998). Figure 11 and Figure 12 show a towing apparatus of side-scan sonar and the 

distribution map of Z. caulescens in Koajiro Bay in Sagami Bay obtained by the side-scan sonar, respectively. 

The patch structures are clearly depicted. However, it is difficult for this method to measure densities and 

heights of plants along a transect.  

Sagawa et al. (2008) proposed use of sidescan sonar image as ground-truth data. They surveyed seagrass 

beds and examined accuracy of results obtained from satellite images from sidescan sonar image. They 

verified that maps surveyed with a sidescan sonar provides horizontal distributions of seagrass beds and 

proposed central areas (not border area) as ground truthing locations with and without seagrass beds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Picture showing towing transducer of side-scan sonar (Komatsu et al., 2003b) 
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Figure 12. Map showing horizontal distribution of Zostera caulescens surveyed by side-scan sonar (Komatsu 

et al., 2003b). 

 

 

4.4. Seagrass cover and standing crop 

 

Recently, satellite multiband images with high radiometric and/or spatial resolutions are obtained as 

reasonable prices. Using these data, researchers have studied to create maps of seagrass cover and/or seagrass 

standing crop. Estimation of seagrass covers or standing crop require ground truthing data. This section 

explains how to obtain ground-truthing data for this purpose. 

In general, seagrass studies use a destructive sampling with a quadrat to examine species compositions, 

shoot densities, above- and below-ground biomasses, leaf lengths, leaf area index and so on. The main 

disadvantage of the destructive sampling is that it takes much time to take samples in situ and analyze samples 

in a laboratory. Remote sensing studies require many ground truthing data. Thus, non-destructive sampling 

using visual assessment techniques are applied to collect data for remote sensing studies. 

 

Seagrass cover 

 

Percentage cover of seagrass is estimated using a quadrat (e.g. McKenzie, 2003). This method is to take 

digital pictures of seagrass on a quadrat of 0.5 x 0.5 m in situ and classify seagrass covers into percentage 

Koajiro Bay 
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cover by using standardized pictures f seagrass covers. This method is quite repeatable when currents are 

weak and seagrass blades have a vertical orientation. However, the method becomes potentially unreliable 

when current strength increases and forces the seagrass canopy into a progressively horizontal (flattened) 

plane (Mumby et al., 1997a).  

 

Seagrass standing crop 

 

Mumby et al. (1997a) propose an alternative method to estimate seagrass standing crop based on Mellors 

(1991). An intensive 3-day training period was undertaken prior to survey work. After a broad reconnaissance 

survey, a provisional biomass scale was established following the methods of Mellors (1991). A quadrat of 

0.5 x 0.5 m is placed in an area with the lowest discernible biomass and was given the category 1. The next 

quadrat is placed in seagrass which was both densest and possessed greatest blade length. This was assigned 

a category of 6. Quadrats for categories 2, 3, 4 and 5 are placed by estimating a linear interpolation between 

categories 1 and 6. Three divers conduct surveys using the technique by haphazardly throwing quadrats and 

comparing categories. Over 100 quadrats are cross-compared in this fashion until inter-observer agreement 

is highly consistent (complete agreement on approximately 95% of occasions). At this point, an adequate 1-

6 scale is deemed to have been established and 4 quadrats of each category are excavated for calibration 

purposes. The quadrats are located haphazardly (i.e. pseudo-randomly) and encompassed a range of seagrass 

species composition rates if they are more than one species. Harvested seagrass is washed in fresh water and 

sorted to remove detritus and sediment. Each sample is divided by species and then sub-sampled for biomass 

categories 4-6 if it takes time to examine all seagrass in a quadrat of these categories. Sub-sampling is not 

necessary for most of the samples from categories 1-3. Epiphytes are removed from seagrass blades using 

either 5% citric acid or vinegar. Samples are oven-dried at 80°C for 48 h and weighed to the nearest 0.1 g 

using an electronic balance. Epiphyte-free total dry weights are calculated for each quadrat. It is important 

not to confuse percent cover or density with standing crop estimation. Although density and biomass arc 

closely related, the determination of standing crop also takes into account blade length and the relative dry 

weight of each species. From a practical perspective, the assessment is carried out by considering the entire 

3-dimensional standing crop within the quadrat (i.e. a volume of seagrass above the sediment). In their case, 

the highest standing crop categories of 5 and 6 differ mainly in blade length rather than density. They 

recommend making a photographic record of the calibration quadrats which can be laminated and taken 

underwater for guidance. 

The seagrass standing crop is plotted with ordinal scale (categories 1-6) for calibration of the scale. Mumby 

et al. (1997a) obtained the regression line by transforming standing crop data with a modified square root 

function with a good coefficient of determination. Using this regression, visual assessment surveys on 

seagrass can bring standing crop data. 
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Figure 13. Calibration of ordinal scale for estimating seagrass standing crop (Mumby et al., 1997a). The 

mean 95% confidence intervals of the mean and range are shown from calibration data of each category. The 

variance within actual dry weights has been stabilized using a modified square-root transformation (x’=√

(x+3/8)). Coefficient of determination, r2=0.94 (n=103), actual standing crop (g m-2). (Source: Mumby et al., 

1997a) 
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5. Preparation for processing satellite images 

 

5.1. Geometric correction 

 

Satellite sensors project three dimensional surface of the earth to a plane. Satellite data were generally 

geocoded with WGS 84 coordinate system. Therefore, it is necessary to adjust a spherical surface to a 

horizontal plane. In most cases, remote sensing uses Universal Transversal Mercator (UTM) projection. In 

the plane of UTM, x axis and y axis represent east and north directions. UTM system has a zone number 

depending on longitude of an area by every six degrees from zone No. 1 between 180°W and 174°W to zone 

No. 60 between 174°E to 180°W. However, geometrical correction is needed to fit the image to the UTM 

coordinate system. This correction is based on more than six GCPs whose longitude and latitude have already 

been precisely obtained. In some cases, it is necessary to measure longitude and latitude of some 

discriminative points on the ground with D-GPS. If no GCPs are available, we select some alternative points 

on the map as GSPs. We relate GCPs with the corresponding points on the satellite image with software for 

remote sensing. This operation is called as geometric correction. It is recommended that GCPs are scattered 

and also placed at edges and corners of structural object or roads for analysis.  

 

 

5.2. Digital number to radiance 

 

The DN values recorded by a sensor are proportional to upwelling electromagnetic radiation. The 

majority of image processing has been based on raw digital number (DN) values in which actual spectral 

radiances are not of interest (e.g. when classifying a single satellite image). However, there are problems with 

this approach. The spectral signature of a habitat expressed as DN values is not transferable because the 

values are image specific under viewing geometry of the satellite when the image was pictured, the location 

of the sun, specific weather conditions, etc. We can’t compare the values among the images taken at different 

time (e.g. seasons, years) by different satellite sensors (e.g. LANDSAT TM, AVNIR-2, IKONOS) and on the 

area of study larger than a single scene. Thus, it is necessary to convert the DN values to spectral units that 

are universal among different satellite images. If we obtain the spectral signature of substrate types, we can 

compare “spectral libraries” - i.e. libraries of spectral signatures containing lists of habitats and their 

reflectance. Converting the DN values to spectral units, we can refer calibration equations depending on 

satellite sensors that are included in the image data. In an example of IKONOS, the following conversion 

equation is generally used (Taylor 2005): 

 

𝐿௜ ൌ 𝐷௜  / 𝐶௜  ,                                      (1) 

  

where L is the radiance at the sensor aperture (mW cm-2 sr-1), C is the in-band radiance calibration coefficient 
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(cm2 sr mW-1) and D is the DN value. In the equation the subscript i represents spectral band i. Spectral 

radiances can be obtained from the calibration equation (1). USGS also provides the following equation for 

converting DN to radiance of LANDSAT 8 OLI (USGS, 2014).  

 

𝐿௜  ൌ 𝑀௅௜  𝐷௜  ൅  𝐴௅௜   ,                                 (2) 

 

where MLi and ALi are band-specific multiplicative rescaling factor and band-specific additive rescaling factor 

of band i from the metadata, respectively. These radiances are those at the top of atmosphere (TOA). DN of 

LANDSAT 8 OLI can be also converted to TOA reflectance as the following equation (USGS, 2014): 

 

 

                                                                                    (3) 

 

where Mρi and Aρi are band-specific multiplicative rescaling factor and band-specific additive rescaling factor 

of band i from the metadata, respectively. θSZ and θSE are local sun elevation angle of the scene center in 

degrees provided in the metadata and local solar zenith angle, respectively. 

 

 

5. 3. Masking land areas and deep waters 

 

It is necessary to exclude the land from satellite images for classification of coastal habitats to avoid 

miss-classification of seagrass beds. Near-infrared bands are easily absorbed by the sea surface while 

reflected by the land surface (Figure 14). Thus, we use DN, reflectance or radiance of an infrared band on 

the image to discriminate the sea from the land. If ponds or lakes are distributed on land, we need to manually 

mask them. 

Deep waters are also excluded with red or green bands because they are absorbed with shallow water 

column. The deeper water areas indicate constantly lower values of their DN, reflectance and radiances. Thus, 

deep water areas can be classified with a certain threshold value. At the same time, it is needed to pay attention 

not to exclude seagrass and seaweed beds because seagrass and seaweed beds also show their lower values. 

 

 

5.4. Atmospheric correction 

 

The spectral radiances are those measured at the satellite sensor. Figure 4 shows that electromagnetic 

radiation observed by the satellite sensor has already passed through the Earth’s atmosphere twice (sun to 

target and target to sensor). During this passage, the radiation is affected by absorption which reduces its 

intensity and scattering which alters its direction. Absorption occurs when electromagnetic radiation interacts 
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with gases such as water vapor, carbon dioxide and ozone. The electromagnetic radiation is scattered when 

it hits both gas molecules and airborne particulate matter (aerosols). Scattering will redirect incident 

electromagnetic radiation and deflect the reflected radiation from its path. Scattering also creates the 

adjacency effect in which the radiance recorded for a given pixel partly incorporates the scattered radiance 

from neighboring pixels. In order to make a meaningful measure of radiance at the Earth’s surface, the 

atmospheric interferences must be removed from the data. This process is called atmospheric correction. 

There are some sophisticated models of atmospheric corrections such as 5s and 6s models (e.g. Tanre et al., 

1990; Vermote et al., 1997), etc. After the atmospheric correction, light signals from the earth surface become 

clearer.  

Spectral radiance will depend on the degree of illumination of the object (i.e. the irradiance). Then, the 

spectral radiance of features on the ground obtained by the atmospheric correction is usually converted to 

reflectance, which is called surface reflectance meaning the reflectance of the surface of the Earth. The 

reflectance is a ratio of radiance to irradiance on a certain surface. Be careful that surface reflectance is not 

that on the sea bottom.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. LANDSAT 8 OLI images of true color (upper left), band 5 (upper right) and mask (lower) on 

Ajino Bay, Japan. The mask was produced from pixels with DN values less than 7000. 

5.5. Water column correction 
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In coastal waters, Lyzenga’s model has been often used for water column correction because this model’s 

simplicity and effectiveness. In the scope of radiometric correction, each pixel value within the image (DN 

value) is converted into a radiance value as mentioned above. From an optical perspective, bottom type can 

be identified by its reflectance. According to Lyzenga (1978), the relationship between the radiance level 

recorded by an optical sensor and bottom reflectance is expressed by the following equation: 

 

 𝐿௜ ൌ  𝐿 ௦௜ ൅ 𝑎௜𝑟௜exp ሺെ𝐾௜ 𝑔𝑍 )                             (4) 

 

where L is the radiance same as in the equations (1) or (2), Ls is the radiance recorded over deep water 

(external reflection from the water surface and scattering in the atmosphere), a is a constant which includes 

the solar irradiance, the transmittance of the atmosphere and the water surface, and the reduction of the 

radiance due to refraction at the water surface (mW cm-2 sr-1), r is the bottom surface reflectance, K is the 

effective attenuation coefficient of the water (m-1), g is a geometric factor to account for the path length 

through the water and Z is the water depth (m). The value of g can be geometrically calculated from sun and 

satellite zenith angles at the moment when the satellite image was taken. Bottom differences are mirrored by 

variations in L, as r changes according to the bottom type. A radiometric correction index is required for 

estimating r. We introduce two types of simple radiometric correction suitable for coastal mapping: depth-

invariant index proposed by Lyzenga (1981) and reflectance index proposed by Sagawa et al. (2010). 

 

 

Depth-invariant index 

 

In order to remove light scattering and absorption effects within both the atmosphere and the water body, 

Lyzenga (1981) suggested the calculation of a depth-invariant index. This index is expressed as follows: 

 

 

                                                                                    (5) 

 

 

where L, Ls and K are the same as in equation (4), this time with the i and j subscripts corresponding to two 

different bands of satellite image. Equation (5) is derived from equation (4) and refers simultaneously to two 

bands (bands i and j). For calculating this index, ratios of attenuation coefficients between bands are necessary. 

These coefficients were derived from ground truth data collected for a sandy bottom along a bottom depth 

gradient (Lyzenga 1981). Using ground truth data, we can plot satellite data against bottom depths for sandy 

bottom type. The regression curve of Lyzenga’s model is then obtained. When ground truth data are not 

available, we estimate sandy bottom and bottom depth from the sea chart if it exists. When the sea chart is 

not available, we estimate Kj/Ki as follows. Equation (5) can be transformed to equation (6) through dividing 
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numerator and denominator with Ki: 

 

 

 

                                                       ,                            (6) 

 

 

where ln(Li-Lsi) and ln(Lj-Lsj) are dependent variables of bottom depths from equation (4). If we can obtain 

reflectances of band i and j at the same pixels on a satellite image, ln(Li-Lsi) and ln(Lj-Lsj) on pixels interpreted 

as the sand bottom are plotted them on horizontal axis and vertical axis, respectively. The regression line of 

points between ln(Li-Lsi) and ln(Lj-Lsj) gives Kj/Ki as its slope.  

  

 

Bottom reflectance index 

 

In order to improve mapping accuracy, Sagawa et al. (2010) proposed an alternative reflectance index 

(Bottom Reflectance Index: BR index) expressed by the following equation: 

 

 

                                                   ,                                (7) 

 

where L, Ls, K, g and Z are the same as equation (4).  

To calculate this BR index, it is needed to combine bottom depth data, Z, with attenuation coefficient, 

K. We use each band attenuation coefficient same as for the Depth-invariant index. Concerning bottom depth 

data, the bathymetry map or sea chart supplied by local government or hydrographical institutions is referred. 

It may be reasonable to take advantage of these data, as they are easily available and represent generally 

accurate input. Once the numerator in equation (7) was replaced by ai ri exp(-KigZ) (from equation (4)) and 

the equation rearranged, the index becomes the following equation including bottom reflectance: 

 

iii raIndex BR                                          (8) 

 

where a and r are the same as in equation (4) and i corresponds to a satellite image band i. Clearly, this index 

is linearly related to bottom reflectance. As a result, we named it ‘reflectance index’. This index enables us 

to compare not only the difference in reflectance ratios between bands but also the difference in absolute 

reflectance for each band of satellite image. 

According to Lyzenga (1978), equation (4) should not be applied to very shallow areas, as the model 

ignores internal reflection effects occurring at the water surface. Thus it is better to apply both radiometric 
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corrections exclusively to areas deeper than about 1-2 m. On the other hand, we need not underwater but 

atmospheric radiometric correction when there are seagrasses exposed to the sea surface.  
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Figure 15. Maps derived from satellite image analysis (Mahares). Black areas, described as ‘0–2 meters 

(unclassified area)’ in the legends, represent the data which were not included in our analysis. The maps are 

obtained by applying a radiometric correction based on (a) the traditional depth-invariant index; (b) the 

bottom reflectance index. (Source: Sagawa et al., 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Relation between radiance level and depth blue (upper panel) and green (lower panel) on the sand 

bed (source: Sagawa et al., 2010)  
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Sagawa et al. (2010) applied both radiometric corrections of Depth-invariant index and Bottom 

Reflectance index to IKONOS image spotting seagrass beds off Mahares in Golf of Gabesz, south Tunisa, 

facing Mediterranean Sea, acquired on 2 October 2005. In this area, Posidonia oceanica L. is the most 

abundant and common species and it mainly occurs on a sandy bottom. Figure 15 shows results of supervised 

classification applied to Depth-invariant Index and Bottom Reflectance index to classify sand and seagrass. 

In these waters, water type was Jerlov Water Type II-III suggesting turbid waters (Figure 16). Overall 

accuracy of the former was 54% meaning random classification between two bottom types. On the other 

hand, that of the latter was over 90%. When the bottom depth distribution is available, radiometric correction 

using Bottom Reflectance index is very practical to map seagrass beds under turbid waters rather than Depth-

invariant index. When water is clear, radiometric correction using Depth-invariant index can obtain good 

classification results. This is true because some studies showed good results applying Depth-invariant index 

for mapping of seagrass beds in Caribbean Sea (Mumby et al., 1998) or Mediterranean Sea (Pasqualini et al, 

2005; Belluco et al, 2006; Fornes et al, 2006) where transparencies are very high.  
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6. Image classification 

 

6.1 Pixel-based classification 

  

In coastal habitat mapping, pixel-based classification consisting of supervised or unsupervised 

classification is generally applied to multiband satellite data after radiometric correction mentioned above. 

Most classifications for seagrass mapping have been created using a pixel-based analysis of satellite 

multiband images. They used either a supervised classification or unsupervised classification. These pixel-

based procedures analyze the spectral properties of every pixel within the region of interest. Ground truth 

data concerning each bottom type distributions are required. These data must be prepared through ground-

truthing such as diving, observation by a lowered camera from the ship, side scan sonar measurements, etc. 

as mentioned above and described by Komatsu et al. (2003b). If ground truth data are not available, 

unsupervised classification is useful. Unsupervised classification groups pixels into some categories with 

similar bottom reflectance though a statistical standard such as ISODATA etc. Using the unsupervised 

classification method, the software is instructed to create the number of clusters that is input before processing 

in the iterations that is input before processing the while attempting to meet a predetermined threshold value. 

By calculating and plotting the cluster statistics we can determine what number of clusters (or classes) to use. 

Usually, we determine the number of clusters more than classes that we need. After processing, some clusters 

are merged to one cluster when they represent a suitable class. Based on unsupervised classification, we can 

effectively conduct ground truth survey or field survey. 

Mumby and Green (2000) stated that number of samples (ground truth data) necessary for one class 

with a supervised classification is 50 ground truth data corresponding to 50 pixels of image. Calculation of 

classification accuracy needs 30 ground truth data (30 pixels of image). Thus, a total of 80 ground truth data 

are needed for one class with a supervised classification. When we classify pixels into three classes, we need 

240 ground truth data corresponding to 240 pixels of image. This is ideal case. Since we don’t have enough 

time to take these samples, we use 25 to 30 samples for one class for supervised classification and 20 to 30 

samples for one class for accuracy evaluation.  

The classification of supervised classification is based on the spectral signature defined in the training 

set. The digital image classification software determines each class on what it resembles most in the training 

set. Supervised classification is based on the idea that a user can select sample pixels in an image that are 

representative of specific classes and then direct the image processing software to use these training pixels 

as references for the classification of all other pixels in the image. Training pixels are based on the ground 

truth data above-mentioned. The common supervised classification algorithms are maximum likelihood and 

minimum-distance classification. Maximum Likelihood method assumes that the statistics for each class in 

each band are normally distributed and calculates the probability that a given pixel belongs to a specific class. 

Each pixel is assigned to the class that has the highest probability (that is, the maximum likelihood). 

Minimum Distance method uses the mean vectors for each class and calculates the Euclidean distance from 
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each unknown pixel to the mean vector for each class. The pixels are classified to the nearest class.  

 

6.2 Object-oriented classification 

 

Recently, higher resolution satellite images such as WorldView2 and WorldView3 are available with 

reasonable prices as archived images. It is possible for classifications to take into account the spatial or 

contextual information related to pixels. Thus, the idea to classify objects stems from pixel-based 

classifications to object-oriented (or object-based) classifications based on groups of pixels with based on 

their internal homogeneity and spectral separability at multi-scale levels. The object-oriented analysis 

classifies objects instead of single pixels by multi-scale segmentation of pixels, which lead to the extraction 

of spectrally and internally homogeneous units at a particular scale. It includes image segmentation to identify 

image objects and classification of the identified image objects. Objects form a hierarchical and scale-

dependent structure. This means that any object, in contrast to a pixel, has not only neighbors but also sub-

objects and super-objects at different scales. Groups of pixels, due to their hierarchical structure, are able to 

include many attributes which can describe objects’ intrinsic characteristics (using physical features like color, 

texture, and shape), typological characteristics (relations to other objects, sub-objects and super-objects) and 

context. Two representative softwares of object-oriented approach are ENVI EX (Exelis VIS) and eCognition 

(Trimble), which are based on edge to identify image objects and on FNEA (fractal net evolution approach) 

and multi-resolution segmentation, respectively (Xiaohe et al., 2014). 

The object-oriented method was applied to seagrass mapping with images obtained from airborne digital 

cameras by Lathrop et al. (2006). Following Robbins and Bell’s (1994) approach, they set habitat structure 

at three different levels: (a) meadow - a spatially continuous area of seagrass beds of varying percent of cover 

composition; (b) bed - a spatially continuous area of overall similar percent of cover composition; and (c) 

patch - a small discrete clump of seagrass- or gap - an area within a seagrass bed not occupied by plants.  

Lathrop et al. (2006) developed a hierarchical classification scheme to multiband images in a shallow 

(mean depth of 1.5 m at mean lower-low water) back-bay lagoonal type of estuary on New Jersey’s Atlantic 

coast taken by an airborn digital camera. Two GeoTiff image products were created, a true color imagery set 

and an infrared imagery set, both at a 1 meter ground cell resolution and 8-bit radiometric resolution. They 

broadened three different levels of seagrass to six levels including them: Level 1 of land and water, Level 2 

of deepwater/channels (>1.5 to 2 m depth) and shallow water (<1.5 to 2 m depth) from water of Level 1, 

Level 3 of sand/mud flats (<1.5 to 2 m depth) and macrophyte from shallow water of Level 2, Level 4 of the 

macroalgae and seagrass meadows from macrophyte of Level 4, Level 5 of dense, moderate and sparse 

seagrass beds from seagrass meadows of Level 4, and Level 6 of seagrass patch and gap (bare bottom) of 

three seagrass levels of Level 5. Level 1 was classified with near-infrared band. Level 2 was classified a 

simple membership rule based on the bathymetry layer. Level 6 was obtained by segmenting the whole area 

to fine scale objects using a scale parameter of 10. The image segmentation was then coarsened to merge 

areas of like classes using a scale parameter of 15 (for Level 5) and 30 (for Level 4). The Level 4 or 5 image 
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objects were visually interpreted and manual encoded as to the appropriate bottom type based on the analyst 

judgment. If the field reference data was available, the analyst can consult them. Thus, level 4 to 6 are 

dependent of scales of image segmentation decided by scale parameters arbitrarily given. The size of the 

object is associated with its physical and biological spatial structure. A homogeneity criterion for smoothness 

and compactness of segmentation is based on a local variance of pixels to be grouped, given by a parameter. 

The seagrass density data for the 245 field reference points were categorized into four seagrass density classes 

(absent, sparse, moderate, and dense), compared with the same location from the classification result.  

Urbański et al. (2009) analyzed Quickbird data for mapping seagrass beds in sandy shoal habitat in the 

southern Baltic Sea. The spatial resolution of the panchromatic band and multi-spectral bands are 0.6 m and 

2.5 m, respectively. Their number and size at the particular segmentation level depend on a scale parameter. 

The segmentation process aims to retain objects of strong spectral and shape homogeneity. They segmented 

each panchromatic image for the following scale parameters: 400, 300, 200, 100, 50, and 20; which constitute 

six levels of objects as mentioned above. The homogeneity criterion was set to 0.9 for colour, 0.1 for shape, 

and 0.5 both for smoothness and compactness. They selected level of seagrass meadows, beds and patch/gap 

with scale parameters of 200, 20 and 10, respectively. They classified segments of seagrass bed level into 

five zones with a seagrass index (SGI) consisting of band 1, band 2 and standard deviation of band 2 of 

segment with a scale parameter of 20. Within each zone in the object layer with a scale parameter of 20 

(patch/gap level), approximately 30 objects presenting vegetation cover (SAV) and approx. 30 objects 

without vegetation cover (notSAV) were selected by manual sampling. In order to perform accuracy 

assessments, samples from the patch/gap level were selected once more but for the scale parameter of 10. 

The samples were assigned to SAV or notSAV classes. They stated “Atypical, potentially difficult to classify 

objects were purposely chosen”. A problem of object-oriented classification is to set parameters not 

objectively but subjectively and also needs manual choosing of segments. In many cases, seagrasses grow 

patchy and show their distributions as salt-and-pepper. In these cases, it is still better to apply a pixel-based 

classification with a high spatial resolution satellite images. 
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7. Validation of accuracy 

 

One of the most important themes for seagrass mapping with a remote sensing is an accuracy evaluation 

of classification. In general, accuracies of classification are evaluated with an error matrix (confusion matrix 

or contingency table) (Mumby and Green, 2000). The accuracies are judged with a user accuracy, a producer 

accuracy, an overall accuracy and a tau coefficient (Ma and Redmond, 1995).  

 

Error Matrix (Pixels and percent) 

 

The error is calculated by comparing the class of each ground truth pixel with the corresponding class 

in the classification image. Each column of the error matrix represents a ground truth class and the values in 

the column correspond to the classification image’s labeling of the ground truth pixels. Table 3 shows the 

class distribution in pixels and percentage for each ground truth class. 

 

 

Table 3. Example of error matrix of seagrass mapping. Yellow cells represent diagonal components that are 

correctly classified. Numbers and those in parentheses are pixels and percentages of pixels, respectively.  

 
 

 

User accuracy is a measure indicating the probability that a pixel is Class A given that the classifier has 

labeled the image pixel into Class A. User accuracies are shown in the rows of the error matrix. For example, 

in Table 3, seagrass class classified by the classifier has a total of 20 pixels where 14 pixels are classified 

correctly and 6 other pixels are classified incorrectly. The ratios of the number of pixels classified correctly 

(14) and incorrectly (6) into the seagrass class by the total number of pixels in the class of seagrass by the 

classfier (20) are 70% and 30% (Table 3), respectively, corresponding to a user accuracy and an error of 

commission. 

The producer accuracy is a measure indicating the probability that the classifier has labeled an image 

pixel into Class A given that the ground truth is Class A. For example, in Table 3, seagrass class of ground 

truth has a total of 100 pixels where 14 pixels are classified correctly and 86 other pixels are classified 

incorrectly. The ratios of the number of pixels classified correctly (14) and incorrectly (86) into the seagrass 

 
Satellite image

classification data
Seagrass Sand Row total User accuracy

Seagrass 14 (7) 6 (3) 20 (10) 14/20 (70)
Sand 86 (43) 94 (47) 180 (90) 94/180 (52.2)

Column total 100 (50) 100 (50) 200 (100)
Producer accuracy 14/100 (14) 94/100 (94)
Overall accuracy 108/200 (54)
Tau coefficient 0.08

Ground truth data
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class by the total number of pixels in the ground truth class of seagrass (100) are 14% and 86% (Table 1), 

respectively, corresponding to a producer accuracy and an error of omission. 

The overall accuracy is calculated by summing the number of pixels classified correctly and dividing 

by the total number of pixels. The pixels classified correctly are found along the diagonal of the error matrix 

table which lists the number of pixels that were classified into the correct ground truth class. The total number 

of pixels is the sum of all the pixels in all the ground truth classes. For example, in Table 1, pixel counts of 

diagonal components consist of 14 pixels of seagrass and 94 pixels of sand, meaning correctly classified 

pixels. The overall accuracy (54%) is obtained by dividing the correctly classified pixels number (14+94) by 

the total number of ground truth pixels (200). 

Overall accuracy is the overall degree of agreement in the matrix. Generally, accuracies of classification 

of surface covers of coastal sea bottom are lower than those of land (e.g. Mumby et al, 1998). Mumby et al. 

(1999) stated that reasonable accuracy is between 60 and 80% for coarse descriptive resolution such as 

corals/seagrasses and mangroves/non-mangroves by using satellite images such as LANDSAT TM or 

pansharpened image of LANDSAT TM with SPOT. In any cases, overall accuracy is more than about 90% 

to monitor temporal changes in spatial distributions of bottom covers using a remote sensing (Mumby and 

Green, 2000). 

 

 

Tau Coefficient 

 

It is a reasonable way to describe the overall accuracy of a map but does not account for the component 

of accuracy resulting from chance alone. A chance component of accuracy exists because even a random 

assignment of pixels to habitat classes would include some correct assignments. 

The Tau coefficient, T(e), is another measure of the accuracy of the classification to exclude a chance 

component and is expressed as the following equation: 

 

 

                                               ,                              (9) 

 

 

where Pr(a) and Pr(e) are the relative observed agreement among classes and hypothetical probability of 

chance agreement. For example, in Table 3, Pr(a) corresponds to the overall accuracy, 0.54. Pr(e) derived 

from two classes is 0.5. Then, we can obtain T(e) as 0.08 by dividing (0.54-0.50) with (1.0-0.5). The Tau 

coefficient ranges between -1.0 and 1.0. When the Tau coefficient is -1.0 and 1.0, classification is of perfect 

discrepancy and agreement, respectively. When the Tau is between 0.41 and 0.60, classification is of 

moderate agreement. When the Tau is between 0.61 and 0.80, classification is of good agreement. When the 

tau is over 0.80, classification is of nearly prefect agreement.  

)ePr(1

)ePr()aPr(
T(e)
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The variance of Tau, σ2, is calculated as the following equation (Ma and Redmond, 1995): 

 

 

 

                                                     ,                            (10) 

 

Confidence intervals are then calculated for each Tau coefficient at the 95% confidence level (1-α), using the 

following form: 

 

                                                     ,                            (11) 

 

where Z is a standard normal distribution with the lower bound of α/2. Using Table 3, we obtain 95%CI as 

0.08 ±0.005. The coefficient’s distribution approximates to normality and Z-tests can be performed to 

examine differences between matrices (Ma and Redmond 1995). Z-tests between Tau coefficients 1 and 2 (T1 

and T2) are conducted using the following equations: 
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                                                     ,                            (12) 

 

where σ2 is the variance of the Tau coefficient, calculated from equation (10). We can examine whether Tau 

coefficients have a 95% probability of being different or not. 
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8. Coverage and biomass estimation of seagrass 

 

Some recent studies have documented methods for mapping seagrass species, cover and biomass 

properties from satellite images and field data (e.g. Baumstark et al., 2013; Urbański et al., 2010). Phinn et 

al. (2008) compared accuracies of seagrass percentage cover classification (1–10%, 10–40%, 40–70% and 

70–100%) in the shallow sub-tidal areas of the Eastern Banks, Moreton Bay, Australia, among images of 

compact airborne spectrographic imager with a pixel size of 4 m x 4 m, a radiometric resolution of 14 bit and 

16 bands (CASI), Quick Bird-2 with a pixel size of 2.4 m x 2.4 m, a radiometric resolution of 11 bit and 4 

bands, and LANDSAT 5 TM with a pixel size of 30 m x 30 m, a radiometric resolution of 8 bit and 4 bands. 

The airborne hyper-spectral image data returned high accuracies across all cover levels from very high (70–

100%) to very sparse (0–10%). In contrast, both Quick Bird-2 and LANDSAT 5 TM were unable to 

differentiate moderate to low (10–40%) and sparse (0–10%) levels of seagrass cover. In the LANDSAT 5 

TM image data this was expected as a function of its relatively large pixel size, limited radiometric resolution 

and broad spectral bands. Phinn et al. stated that the band placement and slightly lower radiometric resolution 

of Quick Bird-2 than the CASI data, and reduced its ability to detect the small reflectance differences between 

seagrass cover.  

Most of researches on seagrass biomass use relation between signals of multi bands from bottom 

substrates and seagrass covers or standing crops of seagrass. Seagrass covers and standing crops of seagrass 

are obtained by quadrat sampling of seagrass through field surveys. Mumby et al. (1997) used the DII as 

signals. If more than one DII are available, they applied principal component analyses to combine multiple 

DIIs into a single regressor (the first principal component). They obtained ground-truthing data by simple, 

precise, non-destructive and quick method for measuring seagrass standing explained in Section 4.4. 

Above-ground biomass of seagrass has been estimated by remote sensing. Most of studies have 

converted pixel values of reflectance to above-ground biomass based on a regression between reflectance 

and biomass which have been obtained by quadrat sampling in situ. Mumby (1997b) compared performances 

of above-ground biomass estimation with use of regressions between field measurements of standing crop 

and Depth-invariant indexes of LANDSAT TM, SPOT XS and CASI images on seagrasses in the tropical 

Western Atlantic. They found that predictions were high coefficients of determination: 0.74, 0.79 and 0.81, 

respectively. Hashim et al. (2014) used LANDSAT 8 OLI image to map seagrass biomass in Johor Straight. 

After they classified seagrass beds, they mapped above-ground biomass of classified seagrass area based on 

a regression between BR Index and above-ground biomass of quadrat sampling of 0.5 x 0.5 m. They obtained 

good regression between them with a coefficient of determination of 0.93 (r2) (see Figure 13).  

For estimating above-ground biomass of seagrasses, it is necessary to consider their seasonal changes. 

When we compare biomass distributions among different locations and periods, we need to take luxurious 

and scanty growth seasons of seagrasses, interannual changes of timing of their growth and interannual 

changes in their distributions into account. Another problem is whether quadrat sampling of seagrass biomass 

in only 0.5 x 0.5 m area represents biomass in a pixel or not. For example, one pixel of LANDSAT TM is 30 
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x 30 m. This pixel size includes not only quadrat sampling position but also other bottom covers, which 

produce a mixel effect. If seagrass beds are not homogeneous, quadrat samples are not representative of the 

pixel because of its broader area. If we use Quick Bird-2 or CASI, we encounter georeferencing problems of 

quadrat samples and pixels. When quadrat sampling is conducted in situ, its position is obtained with GPS. 

The position data by GPS include an error. Satellite and CASI images also include error in pixel positions. It 

is possible that a position of quadrat sampling is not identical to a pixel on satellite or CASI images. To solve 

this georeferencing problem, it is needed to use more accurate GPS system. When we estimate seagrass 

biomass roughly with satellite image analysis with quadrat sampling, an objective of biomass estimation 

must be clear.  
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9. Summary 

 

Most of remote sensing studies on seagrass beds aim to map not only spatial distributions at a certain 

time but also temporal changes in spatial distributions from time to time. To conduct a reliable assessment of 

changes in seagrass extent and cover over time, the data sets compared should be based on specific 

requirements as shown in Table 4 (Roelfsema et al., 2013). In regards to assessing natural variability, intra 

vs. inter annual variation and algal presence, it is important that field sampling data and location, and date of 

remotely sensed data sets are considered.  

We introduced simple methods to map seagrass beds. We would like to stress again that radiometric 

correction is very important for satellite remote sensing to map correctly bottom types. In tropical waters, 

water transparency is usually very high. Simple Lyzenga’s Depth-invariant index is very useful. On the other 

hand, in temperate waters with low transparency, Bottom Reflectance index proposed by Sagawa et al. (2010) 

is better than Depth-invariant index.  

At this moment, LANDSAT 8 OLI with 30 m spatial resolution is the only available and non-commercial 

satellite images provided by NASA, and can be applied to coastal habitat mapping without payment. Japan 

Aerospace Exploration Agency will prepare ALOS-3 that has higher spatial resolution than LANDSAT OLI. 

If this satellite is launched, seagrass mapping in the Northwest Pacific will be advanced enormously.  
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Table 4. Ideal requirements to conduct a reliable assessment of changes in seagrass extent and horizontal 

projected percentage seagrass cover over time. *The error that could occur when requirement is not adhered 

to. (Source: Roelfsema et al., 2013) 

 
 

  

Ideal data set requirements Error type*
Example of impact of error (DS1 = data set 1, DS2 = Data

set 2)

Georeferenced Position shift Changes detected (false positives)

Near identical spatial extent Missing data
If an area is not mapped for DS1 compared to DS2 due to
missing data, it could be detected as a change

Identical mapping categories Incomparable mapping categories Qualitative versus quantitative categories

Identical mapping scale Variation in level of detail
Small patches of seagrass are mapped in one and not in
the other

Reproducible mapping method Methodological error
DS1 based on manual digitisation, DS2 based on pixel
based image classification

Seasonal sampling Natural variation DS1 in winter versus DS2 in summer

Similar tidal stage and water clarity Affects ability to detect seagrass
Satellite image for DS1 was derived at high tide with
turbid water, and for DS2 with low tide and clear water.
Seagrass could be mapped in deeper water for DS2.

Replicate field sampling Variation in calibration or validation
DS1 field data based on limited point based sampling,
DS2 based on detailed transect sampling for same area.

Sampling accuracy Decreased map quality
DS1 has high accuracy, versus DS2 with low accuracy
resulting in low reliability



UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
 
Page 40 
 
Acknowledgements 

 

The author appreciates reviewers for their constructive comments. He also thanks to Dr. Tatsuyuki Sagawa 

of Remote Sensing Technology Center of Japan and Dr. Genki Terauchi of Northwest Pacific Region 

Environmental Cooperation Center for their critical reading of the manuscript. 

  



Annex 1. UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
1 

Page 41 
 

41 
 

References 

 

Baumstark, R., Dixon, B., Carlson, P., Palandro, D. and Kolasa, K. (2013): Alternative spatially enhanced 

integrative techniques for mapping seagrass in Florida's marine ecosystem. International Journal of 

Remote Sensing, 34, 1248–1264. 

Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S., Marani, A. and Marani, M. (2006): Mapping 

salt-marsh vegetation by multispectral and hyperspectral remote sensing, Remote Sensing of 

Environment, 105, 54–67. 

Boudouresque, C.-F., Charbonel, E., Meinesz, A., Pergent, G., Pergent-Martini, C., Cadiou, G., Bertrandy, 

M.C., Foret, P., Ragazzi, M. and Rico-Raimondino, V. (2000): A monitoring network based on the 

seagrass Posidonia oceanica in the northwestern Mediterranean Sea. Biologia Marina Mediterranea, 

7, 328-331. 

Calvo, S., Frada Osterano, C. and Abbadessa, P. (1993): The suitability of a topographical instrument for an 

integrated approach to the cartography of Posidonia oceanica meadows. Oceanologica Acta, 16, 273-

278. 

Colantoni, P., Gallignani, P., Fresi, E. and Cinelli, F. (1982): Patterns of Posidonia oceanica (L.) Delile beds 

around the Island of Ischia (Gulf of Naples) and in adjacent waters. P.S.Z.N.: Marine Ecology, 3, 53-

74. 

Coles, R.G., Lee Long, W.J., Watson, R.A. and Derbyshire, K.J. (1993): Distribution of seagrasses, and their 

fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, northern Queensland, 

Australia. Australian Journal of Marine and Freshwater Research, 44, 193-210. 

Costanza, R., d’Arge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, 

R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M. (1997): The value of the world’s ecosystem 

services and natural capital. Nature, 387, 253–260. 

Dennison, W.C., Orth, R.J., Moore, K.A., Stevenson, J.C., Carter, V., Kollar, S, Bergstrom, P.W. and Batiuk, 

R.A. (1993): Assessing water quality with submerged aquatic vegetation: Habitat requirements as 

barometers of Chesapeake Bay health. BioScience, 43, 86-94. 

Duarte, C. M. (1987): Use of echosounder tracings to estimate the above ground biomass of submerged plant 

in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 44, 732-735. 

Duarte, C.M. (1991): Seagrass depth limits. Aquatic Botany, 40, 363-377. 

Duarte, C. M. and Kirkman, H. (2001): Methods for the measurement of seagrass abundance and depth 

distribution. In Global seagrass research methods, edited by Short, F. T., Short, C. A. and Coles, R. G. 

pp. 141-153, Elsevier B.V., Amsterdam. 

Dierberg, F. E. and Kiattisimkul, W. (1996): Issues, impacts, and implications of shrimp aquaculture in 

Thailand. Environmental Management, 20, 649-666. 

Fredj, G., Meinardi, M., Pierrot, S. and Roy, P. (1990): Cartographie par le satellite SPOT 1 de communautés 

benthiques littorales en Méditerranée occidentale. Bulletin de l'Institut océanographique de Monaco, 



UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
 
Page 42 
 

6, 71-85. 

Fornes, A., Basterretxea, G., Orfila, A., Jordi, A., Alvarez, A. and Tintore, J. (2006): Mapping Posidonia 

oceanica from IKONOS. ISPRS Journal of Photogrametry and Remote Sensing, 60, 315-322. 

Gloux, B. (1984): Méthode acoustiques et informatiques appliquées à la cartographie rapide et détaillée des 

herbiers. In International Workshop on Posidonia oceanica Beds. Boudouresque, C.-F., Jeudy de 

Grissac, A. and Olivier, J. (eds), pp. 45-48, GIS Posidonie Press, Marseille. 

Green, R. H. (1979): Sampling design and statistical methods for environmental biologists. John Wiley & 

Sons, New York, 257 pp 

Gujja, B. and Finger-Stich A. (1996): What price prawn? Shrimp aquaculture’s impact in Asia. Environment, 

38, 12-39. 

Hashim, M., Misbari, S., Yahya, N. N., Ahmad, S., Reba, M. N. and Komatsu, T. (2014). An approach for 

quantification of submerged seagrass biomass in shallow turbid coastal waters. In Geoscience and 

Remote Sensing Symposium (IGARSS), 2014 IEEE International. pp. 4439-4442, IEEE. 

Hashimoto, T. and Nishimura, M. (1953): Sounding of artificial schools, rocks and sea plants fields by fish 

finder. Technical Report of Fishing Boat Laboratory, 4, 138-142 (in Japanese). 

Hashimoto, T. and Nishimura, M. (1953): Study on detection of Japanese tang field by the ultrasonic fish-

finder. Technical Report of Fishing Boat Laboratory, 5, 187-194 (in Japanese). 

Hatakeyama, Y. and Maniwa, Y. (1978): On the investigation of seaweed distribution by utilizing the fish 

finder. Technical Report of Fishing Boat Laboratory, 73, 155-168 (in Japanese). 

Huitric, M., Folke, C. and Kautsky, N. (2002): Development and government policies of the shrimp farming 

industry in Thailand in relation to mangrove ecosystems. Ecological Economics, 40, 441-455. 

Jerlov, N.G. (1968): Optical oceanography. Elsevier, New York, 194 pp. 

Jeudy de Grissac, A. and Boudoureque, C.-F. (1985): Rôle des herbiers de Phanérogames marines dans les 

mouvements des sédiments côtiers: les herbiers à Posidonia oceanica. In Acte du colloque 

pluridisciplinaire franco-japonais d'Océanographie Fiscicule 1. Ceccaldi, HJ. and Champalbert, G. 

(eds), pp.143-151, Société Franco-japonaise d’Océanographie, Marseille. 

Kirkman, H. (1990): Seagrass distribution and mapping. In Seagrass research methods. Phillips, RC. and 

McRoy, CP (eds), pp.19-25, Monographs on oceanographic methodology, UNESCO, Paris.  

Kitoh, H. (1983): Seaweed beds research by a scientific echosounder. Seikai Regional Fisheries Research 

Institute News, 43, 2-4 (in Japanese). 

Komatsu, T. (1989): Day-night reversion in the horizontal distributions of dissolved oxygen content and pH 

in a Sargassum forest, Journal of Oceanographical Society of Japan, 45, 106-115. 

Komatsu, T. (1996): Influence of a Zostera bed on the spatial distribution of water flow over a broad 

geographical area, In Seagrass biology: Proceedings of an international workshop Rottnest Island, 

Western Australia, 25-29 January 1996. Kuo, J, Phillips, RC, Walker DI. and Kirkman, H (eds), pp. 

111-116, , Faculty of Science, The University of Western Australia, Nedlands. 

Komatsu, T. (1997): Long-term changes in the Zostera bed area in the Seto Inland Sea (Japan), especially 



Annex 1. UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
1 

Page 43 
 

43 
 

along the coast of the Okayama Prefecture. Oceanologica Acta, 20, 209-216. 

Komatsu, T., Igarashi, C., Tatsukawa, K., Nakaoka, M., Hiraishi, T. and Taira, A. (2002a): Mapping of 

seagrass and seaweed beds using hydro-acoustic methods. Fisheries Science, 68, sup. I, 580-583. 

Komatsu, T., Igarashi, C., Tatsukawa, K., Sultana, S., Matsuoka, Y. and Harada, S. (2003a): Use of multi-

beam sonar to map seagrass beds in Otsuchi Bay, on the Sanriku Coast of Japan. Aquatic Living 

Resources, 16, 223-230. 

Komatsu, T., Ishida, K., Iizumi, H., Okamoto, M. and Belsher, T. (2001): Utilization of ALOS data for 

mapping coastal ecosystem and managing fisheries activity, Proceeding 1st ALOS PI workshop, 384-

386. 

Komatsu, T., Takahashi, M., K. Ishida, K., Suzuki, T. and Tameishi, H. (2002b): Mapping aquaculture 

facilities in Yamada Bay in Sanriku Coast, Japan, by IKONOS satellite imagery. Fisheries Science, 68, 

sup. I, 584-587. 

Komatsu, T. and Tatsukawa, T. (1998): Mapping of Zostera marina L. beds in Ajino Bay, Seto Inland Sea, 

Japan, by using echo-sounder and global positioning systems. Journal de Recherche Océanographique, 

23, 39-46. 

Komatsu, T., Tatsukawa, K., Ishida, K., Igarashi, C., Sultana, S., Takahashi, M. and Matsuoka, Y. (2002c): 

Development of methods mapping coastal zone along Sanriku Coast using satellite imagery and 

acoustic survey. In Conserving our coastal environment: man and the ocean. UNU-ORI-Iwate 

Symposium Marine Ecology and Environment, United Nations University, pp.33-47, Tokyo, Japan.  

Komatsu, T., Mikami, A., Sultana, S., Ishida, K., Hiraishi, T. and Tatsukawa, K. (2003b): Hydro-acoustic 

methods as a practical tool for cartography of seagrass beds. Otsuchi Marine Science, 28, 72-79. 

Komatsu, T. and H. Yamano (2000): Influence of seagrass vegetation on bottom topography and sediment 

distribution on a small spatial scale in the Dravuni Island Lagoon, Fiji. Biologia Marina Mediterranea, 

7, 243-246. 

Lathrop, R. G.. Montesano, P. and Haag, S. (2006) A multi-scale segmentation approach to mapping seagrass 

habitats using. Photogrammetric Engineering & Remote Sensing, 72, 665–675. 

Lee Long, W.J., Mckenzie, L.J., Rasheed, M.A. and Coles, R.G. (1996): Monitoring seagrasses in tropical 

ports and harbours. In Seagrass biology: Proceedings of an international workshop Rottnest Island, 

Western Australia, 25-29 January 1996. Kuo, J, Phillips, RC, Walker DI. and Kirkman, H (eds), pp. 

345-350, Faculty of Science, The University of Western Australia, Nedlands. 

Lefèvre, J.R., Meinesz, A. and Gloux, B. (1984): Premières données sur la comparaison de trois méthôdes de 

cartographie des biocénoses marines. Rapports et procès-verbaux des réunions Commission 

Internationale pour L'Exploration Scientifique de la Mer Méditerranée, 29, 209-211. 

Long, B.G., Skews, I.D. and Pointer, I.R. (1994): An efficient method for estimating seagrass biomass. 

Aquatic Botany, 47, 277-292. 

Lyzenga, D.R. (1978): Passive remote-sensing techniques for mapping water depth and bottom features. 

Applied Optics, 17, 379-383. 



UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
 
Page 44 
 
Lyzenga, D.R. (1981): Remote sensing of bottom reflectance and water attenuation parameters in shallow 

water using aircraft and Landsat data. International Journal of Remote Sensing, 10, 53-69. 

Ma, Z. and Redmond, R.L. (1995): Tau coefficients for accuracy assessment of classification of remote 

sensing data. Photogrammetric Engineering and Remote Sensing, 61, 435-439. 

McKenzie, L.J. (2003): Guidelines for the rapid assessment and mapping of tropical seagrass habitats. QFS, 

NFC, Cairns, 46pp. 

Meinesz, A. (1997): Balisage de la limite inférieure de l'herbier de Posidonia oceanica en rade de 

Villefranche-sur-Mer (Alpes-Maritimes, France). Rapports et procès-verbaux des réunions 

Commission Internationale pour L'Exploration Scientifique de la Mer Méditerranée, 24, 143-144. 

Meinesz, A., and Laurent, R. (1978): Cartographie et état de la limite inférieure de l’herbier de Posidonia 

oceanica dans les Alpes-maritimes (France) -Campagne Poseidon 1976-. Botanica Marina, 21, 513-

526. 

Meinesz, A. Cuvelier, M. and Laurent, R. (1981): Méthode récentes de cartographie et de surveillance des 

herviers de Phanérogames marines. Vie et Milieu, 31, 27-34. 

Meinesz, A., Boudouresque, C-F. and Lefèvre, J.R. 1988. A map of the Posidonia oceanica beds of Marina 

d'Elbu (Corsica, Mediterranean). P.S.Z.N.: Marine Ecology, 9, 243-252.  

Mellors, J. E. (1991): An evaluation of a rapid visual technique for estimating seagrass biomass. Aquatic 

Botany, 42(1), 67-73. 

Mumby, P. J., Clark, C.D., Green, E.P. and Edwards, A.J. (1998): Benefits of water column correction and 

contextual editing for mapping coral reefs. International Journal of Remote Sensing, 19, 203–210. 

Mumby, P. J., Edwards, A. J., Green, E. P., Anderson, C. W., Ellis, A. C. and Clark, C. D. (1997a). A visual 

assessment technique for estimating seagrass standing crop. Aquatic Conservation: Marine and 

Freshwater Ecosystems, 7(3), 239-251. 

Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D. (1997b): Measurement of seagrass standing crop 

using satellite and digital airborne remote sensing. Marine Ecology Progress Series, 159, 51-60. 

Mumby, P. J., Green, E. P., Edwards, A. J. and Clark, C. D. (1999): The cost-effectiveness of remote sensing 

for tropical coastal resources assessment and management. Journal of Environmental Management, 

55, 157–166 

Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., Folke, C., Lubchenco, 

J., Mooney H. and Troell, M. (2000): Effect of aquaculture on world fish supplies. Nature, 405(6790), 

1017-1024. 

Newton, R.S. and Stefanon, A. (1975): Application of side scan sonar in marine biology. Marine Biology, 31, 

287-291. 

Norris, J.G., Wyllie-Echeverria, S., Mumford, T., Bauley, A. and Turner, T. (1997): Estimating basal area 

coverage of subtidal seagrass beds using underwater videography. Aquatic Botany, 58, 269-287. 

Orth, R.J., Heck, K.L.J. and Van Monfrans, J. (1984): Faunal communities in seagrass beds. A review of the 

influence of plant structure and prey characteristics on predatory-prey relationships. Estuary, 7, 339-



Annex 1. UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
1 

Page 45 
 

45 
 

350. 

Kuwahara, V. S., Toda, T., Hamasaki, K., Kikuchi, T. and Taguchi, S. (2000): Variability in the relative 

penetration of ultraviolet radiation to photosynthetically available radiation in temperate coastal 

waters, Japan. Journal of Oceanography, 56, 399-408. 

Pasqualini, V. and Pergent-Martini, C. (1996): Monitoring of Posidonia oceanica meadows using image 

processing. In Seagrass biology: Proceedings of an international workshop Rottnest Island, Western 

Australia, 25-29 January 1996. Kuo, J, Phillips, RC, Walker, DI. and Kirkman, H (eds), pp. 351-358, 

Fac. Sci. Univ. West., Australia, Western Australia, Nedlands. 

Pasqualini, V., Pergent-Martini, C., Clabaut, P. and Pergent, G. (1998): Mapping of Posidonia oceanica using 

aerial photographs and side scan sonar: Application off Island of Corsica (France). Estuarine, Coastal 

and Shelf Science, 47, 359-367. 

Pasqualini, V., Pergent-Martini, C., Pergent, G., Agreil, M., Skoufas, G., Sourbes, L., and Tsirika, A. (2005): 

Use of SPOT 5 for mapping seagrasses: An application to Posidonia oceanica. Remote Sensing of 

Environment, 94, 39-45. 

Ramos, M.A. and Ramos-Espla, A. (1989): Utilization of acoustic methods in the cartography of the 

Posidonia oceanica bed in the bay of Alicante (SE, Spain). Posidonia Newsletter, 2, 17-19. 

Rey, J. and Diaz del Rio, V. (1989): Cartographia de los fondos marinos de la Bachia de Palma (Baleares, 

Espana): Distribution de las praderas vegetales y sedimentos superficiales. In International Workshop 

on Posidonia beds 2 GIS. Boudouresque, C-F., Meinesz, A., Fresi, E. and Gravez, V. (eds), pp. 29-41, 

Posidonie Press, Marseille. 

Roelfsema, C., Kovacs, E. M., Saunders, M. I., Phinn, S., Lyons, M. and Maxwell, P. (2013): Challenges of 

remote sensing for quantifying changes in large complex seagrass environments. Estuarine, Coastal 

and Shelf Science, 133 161-171. 

Sagawa, T., Mikami, A., Komatsu, T., Kosaka, N., Kosako, A., Miyazaki, S. and Takahashi, M. (2008): 

Mapping seagrass beds using IKONOS satellite image and side scan sonar measurements: a Japanese 

case study. International Journal of Remote Sensing, 29, 281–291. 

Sagawa, T., Boisnier, E. Komatsu, T., Ben Mustapha, K., Hattour, A., Kosaka, N. and Miyazaki, S. (2010): 

Using bottom surface reflectance to map coastal marine areas: a new application method for Lyzenga’s 

model. International Journal of Remote Sensing, 31, 3051–3064 

Short, F. and Willie-Echeverria, S. (1996): Natural and human-induced disturbance of seagrasses. 

Environmental Conservation, 23, 17-27. 

Tanaka, M. and Tanaka, K. (1985): On the estimation of the abundance of seaweed in coastal area I, 

estimation by echosounder. Fisheries Civil Engineering, 21, 17-23 (in Japanese). 

Tanre, D., Deroo, C., Duhaut, P., Herman, M., Morcrette, J. J., Perbos, J. and Deschamps, P. Y. (1990): 

Description of a computer code to simulate the satellite signal in the solar spectrum: 5S code. 

International Journal of Remote Sensing, 11, 659–668. 

Taylor, M. (2005): IKONOS planetary reflectance and mean solar exoatmospheric irradiance, IKONOS 



UNEP/NOWPAP/CEARAC/FPM 13/Ref2 
 
Page 46 
 

planetary reflectance QSOL Rev.1. Available online at: 

http://www.geoeye.com/products/imagery/ikonos/spectral.htm (accessed 15 January 2015). 

Urbański, J. A., Mazur, A. and Janas, U. (2010): Object-oriented classification of Quickbird data for mapping 

seagrass spatial structure. International Journal of Oceanography and Hydrobiology, 38, 27–43. 

USGS (2014): Using the USGS Landsat 8 Product. Available online at: 

http://landsat.usgs.gov/Landsat8_Using_Product.php (accessed 15 December 2014). 

Vermote, E., Tanre, D., Deuze, J. L., Herman, M. and Morcrette, J. J. (1997): Second simulation of the 

satellite signal in the solar spectrum, 6S: An overview, IEEE Transaction on Geoscience and Remote 

Sensing, 35, 675-686. 

Ward, L.G., Kemp, W.M. and Boyton, W.R. (1984): The influence of waves and seagrass communities on 

suspended particulates in an estuarine embayment. Marine Geology, 59, 85-103. 

Xiaohe, Z., Z. Liang, Z. Jixian and S. Huiyong (2014) An object-oriented classification method of high 

resolution imagery based on improved AdaTree. IOP Conference Series: Earth and Environmental 

Science, 17, 012212. doi:10.1088/1755-1315/17/1/012212 


